Test Failed
Pull Request — master (#862)
by Daniil
03:30
created

PluginTemplate6.post_process()   A

Complexity

Conditions 1

Size

Total Lines 2
Code Lines 2

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 2
nop 1
dl 0
loc 2
rs 10
c 0
b 0
f 0
1
# Copyright 2014 Diamond Light Source Ltd.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4
# you may not use this file except in compliance with the License.
5
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9
# Unless required by applicable law or agreed to in writing, software
10
# distributed under the License is distributed on an "AS IS" BASIS,
11
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
"""
16
.. module:: plugin_template6
17
   :platform: Unix
18
   :synopsis: A template to create a plugin that changes the shape of the data.
19
20
.. moduleauthor:: Developer Name <[email protected]>
21
22
"""
23
import numpy as np
24
25
from savu.plugins.plugin import Plugin
26
from savu.plugins.driver.cpu_plugin import CpuPlugin
27
from savu.plugins.utils import register_plugin
28
29
30
@register_plugin
31
class PluginTemplate6(Plugin, CpuPlugin):
32
33
    def __init__(self):
34
        super(PluginTemplate6, self).__init__('PluginTemplate6')
35
36
    def nInput_datasets(self):
37
        return 1
38
39
    def nOutput_datasets(self):
40
        return 1
41
42
    def setup(self):
43
        # get all in and out datasets required by the plugin
44
        in_dataset, self.out_dataset = self.get_datasets()
45
46
        # set in_plugin_dataset first so pattern information is available to
47
        # calculate the new shape
48
        self.in_pData, self.out_pData = self.get_plugin_datasets()
49
        pattern = self.parameters['pattern']
50
        self.in_pData[0].plugin_data_setup(pattern, 'single')
51
52
        # calculate the output shape (based on the input shape)
53
        self.out_shape = \
54
            self.new_shape(in_dataset[0].get_shape(), in_dataset[0])
55
56
        #=================== populate output datasets =========================
57
        # the output data shape retains the same patterns and axis labels but
58
        # requires a different shape.
59
        self.out_dataset[0].create_dataset(patterns=in_dataset[0],
60
                                           axis_labels=in_dataset[0],
61
                                           shape=self.out_shape)
62
63
        #================== populate output plugin datasets ===================
64
        self.out_pData[0].plugin_data_setup(pattern, 'single')
65
66
    def new_shape(self, full_shape, data):
67
        # example of a function to calculate a new output data shape based on
68
        # the input data shape
69
        core_dirs = data.get_core_dimensions()
70
        new_shape = list(full_shape)
71
        for dim in core_dirs:
72
            new_shape[dim] = full_shape[dim] // self.parameters['bin_size']
73
        return tuple(new_shape)
74
75
    def pre_process(self):
76
        # Example of calculating a new slice list to reduce the data
77
        in_data_shape = self.in_pData[0].get_shape()
78
        bin_size = self.parameters['bin_size']
79
        new_sl = [slice(0, i, bin_size) for i in in_data_shape]
80
81
        # update all axis label values based on the new slice list
82
        self.out_dataset[0].amend_axis_label_values(
83
            self.out_pData[0]._get_data_slice_list(new_sl))
84
85
    def process_frames(self, data):
86
        # replace this with your function
87
        return np.zeros(self.get_plugin_out_datasets()[0].get_shape())
88
89
    def post_process(self):
90
        pass
91