|
1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
|
2
|
|
|
# |
|
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
4
|
|
|
# you may not use this file except in compliance with the License. |
|
5
|
|
|
# You may obtain a copy of the License at |
|
6
|
|
|
# |
|
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
8
|
|
|
# |
|
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
12
|
|
|
# See the License for the specific language governing permissions and |
|
13
|
|
|
# limitations under the License. |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
.. module:: plugin_template3 |
|
17
|
|
|
:platform: Unix |
|
18
|
|
|
:synopsis: A template to create a plugin that reduces the data dimensions. |
|
19
|
|
|
|
|
20
|
|
|
.. moduleauthor:: Developer Name <[email protected]> |
|
21
|
|
|
|
|
22
|
|
|
""" |
|
23
|
|
|
|
|
24
|
|
|
import copy |
|
25
|
|
|
import numpy as np |
|
26
|
|
|
|
|
27
|
|
|
from savu.plugins.plugin import Plugin |
|
28
|
|
|
from savu.plugins.utils import register_plugin |
|
29
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
@register_plugin |
|
33
|
|
|
class PluginTemplate3(Plugin, CpuPlugin): |
|
34
|
|
|
|
|
35
|
|
|
def __init__(self): |
|
36
|
|
|
super(PluginTemplate3, self).__init__('PluginTemplate3') |
|
37
|
|
|
|
|
38
|
|
|
def nInput_datasets(self): |
|
39
|
|
|
return 1 |
|
40
|
|
|
|
|
41
|
|
|
def nOutput_datasets(self): |
|
42
|
|
|
return 1 |
|
43
|
|
|
|
|
44
|
|
View Code Duplication |
def setup(self): |
|
|
|
|
|
|
45
|
|
|
in_dataset, out_dataset = self.get_datasets() |
|
46
|
|
|
|
|
47
|
|
|
#=================== populate output dataset ========================== |
|
48
|
|
|
# Due to the reduction in dimensions, the out_dataset will have |
|
49
|
|
|
# different axis_labels, patterns and shape to the in_dataset and |
|
50
|
|
|
# these will need to be defined. |
|
51
|
|
|
# For more information about the syntax used here see: |
|
52
|
|
|
# http://savu.readthedocs.io/en/latest/api_plugin/savu.data.data_structures.data_create |
|
53
|
|
|
|
|
54
|
|
|
# AMEND THE PATTERNS: The output dataset will have one dimension less |
|
55
|
|
|
# than the in_dataset, so remove the final slice dimension from any |
|
56
|
|
|
# patterns you want to keep. |
|
57
|
|
|
rm_dim = str(in_dataset[0].get_data_patterns() |
|
58
|
|
|
['SINOGRAM']['slice_dims'][-1]) |
|
59
|
|
|
patterns = ['SINOGRAM.' + rm_dim, 'PROJECTION.' + rm_dim] |
|
60
|
|
|
|
|
61
|
|
|
# AMEND THE AXIS LABELS: Find the dimensions to remove using their |
|
62
|
|
|
# axis_labels to ensure the plugin is as generic as possible and will |
|
63
|
|
|
# work for data in all orientations. |
|
64
|
|
|
axis_labels = copy.copy(in_dataset[0].get_axis_labels()) |
|
65
|
|
|
rm_labels = ['detector_x', 'detector_y'] |
|
66
|
|
|
rm_dims = sorted([in_dataset[0].get_data_dimension_by_axis_label(a) |
|
67
|
|
|
for a in rm_labels])[::-1] |
|
68
|
|
|
for d in rm_dims: |
|
69
|
|
|
del axis_labels[d] |
|
70
|
|
|
# Add a new axis label to the list |
|
71
|
|
|
axis_labels.append({'Q': 'Angstrom^-1'}) |
|
72
|
|
|
|
|
73
|
|
|
# AMEND THE SHAPE: Remove the two unrequired dimensions from the |
|
74
|
|
|
# original shape and add a new dimension shape. |
|
75
|
|
|
shape = list(in_dataset[0].get_shape()) |
|
76
|
|
|
for d in rm_dims: |
|
77
|
|
|
del shape[d] |
|
78
|
|
|
shape += (self.get_parameters('num_bins'),) |
|
79
|
|
|
|
|
80
|
|
|
# populate the output dataset |
|
81
|
|
|
out_dataset[0].create_dataset( |
|
82
|
|
|
patterns={in_dataset[0]: patterns}, |
|
83
|
|
|
axis_labels=axis_labels, |
|
84
|
|
|
shape=tuple(shape)) |
|
85
|
|
|
|
|
86
|
|
|
# ASSOCIATE AN EXTRA PATTERN WITH THE DATASET: SINOGRAM and PROJECTION |
|
87
|
|
|
# patterns are already asssociated with the output dataset, but add |
|
88
|
|
|
# another one. |
|
89
|
|
|
spectrum = \ |
|
90
|
|
|
{'core_dims': (-1,), 'slice_dims': tuple(range(len(shape)-1))} |
|
91
|
|
|
out_dataset[0].add_pattern("SPECTRUM", **spectrum) |
|
92
|
|
|
#====================================================================== |
|
93
|
|
|
|
|
94
|
|
|
#================== populate plugin datasets ========================== |
|
95
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
|
96
|
|
|
in_pData[0].plugin_data_setup('DIFFRACTION', 'single') |
|
97
|
|
|
out_pData[0].plugin_data_setup('SPECTRUM', 'single') |
|
98
|
|
|
#====================================================================== |
|
99
|
|
|
|
|
100
|
|
|
def pre_process(self): |
|
101
|
|
|
pass |
|
102
|
|
|
|
|
103
|
|
|
def process_frames(self, data): |
|
104
|
|
|
# do some processing here |
|
105
|
|
|
return np.arange(self.parameters['num_bins']) |
|
106
|
|
|
|
|
107
|
|
|
def post_process(self): |
|
108
|
|
|
pass |
|
109
|
|
|
|