|
1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
|
2
|
|
|
# |
|
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
4
|
|
|
# you may not use this file except in compliance with the License. |
|
5
|
|
|
# You may obtain a copy of the License at |
|
6
|
|
|
# |
|
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
8
|
|
|
# |
|
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
12
|
|
|
# See the License for the specific language governing permissions and |
|
13
|
|
|
# limitations under the License. |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
.. module:: data |
|
17
|
|
|
:platform: Unix |
|
18
|
|
|
:synopsis: The Data class dynamically inherits from transport specific data\ |
|
19
|
|
|
class and holds the data array, along with associated information. |
|
20
|
|
|
|
|
21
|
|
|
.. moduleauthor:: Nicola Wadeson <[email protected]> |
|
22
|
|
|
|
|
23
|
|
|
""" |
|
24
|
|
|
|
|
25
|
|
|
import savu.core.utils as cu |
|
26
|
|
|
from savu.data.meta_data import MetaData |
|
27
|
|
|
import savu.data.data_structures.utils as dsu |
|
28
|
|
|
from savu.data.data_structures.preview import Preview |
|
29
|
|
|
from savu.data.data_structures.data_create import DataCreate |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class Data(DataCreate): |
|
33
|
|
|
"""The Data class dynamically inherits from transport specific data class |
|
34
|
|
|
and holds the data array, along with associated information. |
|
35
|
|
|
""" |
|
36
|
|
|
|
|
37
|
|
|
def __init__(self, name, exp): |
|
38
|
|
|
super(Data, self).__init__(name) |
|
39
|
|
|
self.meta_data = MetaData() |
|
40
|
|
|
self.related = {} |
|
41
|
|
|
self.pattern_list = self.__get_available_pattern_list() |
|
42
|
|
|
self.data_info = MetaData() |
|
43
|
|
|
self.__initialise_data_info(name) |
|
44
|
|
|
self._preview = Preview(self) |
|
45
|
|
|
self.exp = exp |
|
46
|
|
|
self.group_name = None |
|
47
|
|
|
self.group = None |
|
48
|
|
|
self._plugin_data_obj = None |
|
49
|
|
|
self.raw = None |
|
50
|
|
|
self.backing_file = None |
|
51
|
|
|
self.data = None |
|
52
|
|
|
self.next_shape = None |
|
53
|
|
|
self.orig_shape = None |
|
54
|
|
|
self.previous_pattern = None |
|
55
|
|
|
self.transport_data = None |
|
56
|
|
|
|
|
57
|
|
|
# def get_data(self, related): |
|
58
|
|
|
# return self.related[related].data |
|
59
|
|
|
|
|
60
|
|
|
def __initialise_data_info(self, name): |
|
61
|
|
|
""" Initialise entries in the data_info meta data. |
|
62
|
|
|
""" |
|
63
|
|
|
self.data_info.set('name', name) |
|
64
|
|
|
self.data_info.set('data_patterns', {}) |
|
65
|
|
|
self.data_info.set('shape', None) |
|
66
|
|
|
self.data_info.set('nDims', None) |
|
67
|
|
|
|
|
68
|
|
|
def _set_plugin_data(self, plugin_data_obj): |
|
69
|
|
|
""" Encapsulate a PluginData object. |
|
70
|
|
|
""" |
|
71
|
|
|
self._plugin_data_obj = plugin_data_obj |
|
72
|
|
|
|
|
73
|
|
|
def _clear_plugin_data(self): |
|
74
|
|
|
""" Set encapsulated PluginData object to None. |
|
75
|
|
|
""" |
|
76
|
|
|
self._plugin_data_obj = None |
|
77
|
|
|
|
|
78
|
|
|
def _get_plugin_data(self): |
|
79
|
|
|
""" Get encapsulated PluginData object. |
|
80
|
|
|
""" |
|
81
|
|
|
if self._plugin_data_obj is not None: |
|
82
|
|
|
return self._plugin_data_obj |
|
83
|
|
|
else: |
|
84
|
|
|
raise Exception("There is no PluginData object associated with " |
|
85
|
|
|
"the Data object.") |
|
86
|
|
|
|
|
87
|
|
|
def get_preview(self): |
|
88
|
|
|
""" Get the Preview instance associated with the data object |
|
89
|
|
|
""" |
|
90
|
|
|
return self._preview |
|
91
|
|
|
|
|
92
|
|
|
def _set_transport_data(self, transport): |
|
93
|
|
|
""" Import the data transport mechanism |
|
94
|
|
|
|
|
95
|
|
|
:returns: instance of data transport |
|
96
|
|
|
:rtype: transport_data |
|
97
|
|
|
""" |
|
98
|
|
|
transport_data = "savu.data.transport_data." + transport + \ |
|
99
|
|
|
"_transport_data" |
|
100
|
|
|
transport_data = cu.import_class(transport_data) |
|
101
|
|
|
self.transport_data = transport_data(self) |
|
102
|
|
|
self.data_info.set('transport', transport) |
|
103
|
|
|
|
|
104
|
|
|
def _get_transport_data(self): |
|
105
|
|
|
return self.transport_data |
|
106
|
|
|
|
|
107
|
|
|
def __deepcopy__(self, memo): |
|
108
|
|
|
""" Copy the data object. |
|
109
|
|
|
""" |
|
110
|
|
|
name = self.data_info.get('name') |
|
111
|
|
|
return dsu._deepcopy_data_object(self, Data(name, self.exp)) |
|
112
|
|
|
|
|
113
|
|
|
def get_data_patterns(self): |
|
114
|
|
|
""" Get data patterns associated with this data object. |
|
115
|
|
|
|
|
116
|
|
|
:returns: A dictionary of associated patterns. |
|
117
|
|
|
:rtype: dict |
|
118
|
|
|
""" |
|
119
|
|
|
return self.data_info.get('data_patterns') |
|
120
|
|
|
|
|
121
|
|
|
def _set_previous_pattern(self, pattern): |
|
122
|
|
|
self.previous_pattern = pattern |
|
123
|
|
|
|
|
124
|
|
|
def get_previous_pattern(self): |
|
125
|
|
|
return self.previous_pattern |
|
126
|
|
|
|
|
127
|
|
|
def set_shape(self, shape): |
|
128
|
|
|
""" Set the dataset shape. |
|
129
|
|
|
""" |
|
130
|
|
|
self.data_info.set('shape', shape) |
|
131
|
|
|
self.__check_dims() |
|
132
|
|
|
|
|
133
|
|
|
def set_original_shape(self, shape): |
|
134
|
|
|
""" Set the original data shape before previewing |
|
135
|
|
|
""" |
|
136
|
|
|
self.orig_shape = shape |
|
137
|
|
|
self.set_shape(shape) |
|
138
|
|
|
|
|
139
|
|
|
def get_original_shape(self): |
|
140
|
|
|
""" |
|
141
|
|
|
Returns the original shape of the data before previewing |
|
142
|
|
|
|
|
143
|
|
|
Returns |
|
144
|
|
|
------- |
|
145
|
|
|
tuple |
|
146
|
|
|
Original data shape. |
|
147
|
|
|
""" |
|
148
|
|
|
return self.orig_shape |
|
149
|
|
|
|
|
150
|
|
|
def get_shape(self): |
|
151
|
|
|
""" Get the dataset shape |
|
152
|
|
|
|
|
153
|
|
|
:returns: data shape |
|
154
|
|
|
:rtype: tuple |
|
155
|
|
|
""" |
|
156
|
|
|
shape = self.data_info.get('shape') |
|
157
|
|
|
return shape |
|
158
|
|
|
|
|
159
|
|
|
def __check_dims(self): |
|
160
|
|
|
""" Check the ``shape`` and ``nDims`` entries in the data_info |
|
161
|
|
|
meta_data dictionary are equal. |
|
162
|
|
|
""" |
|
163
|
|
|
nDims = self.data_info.get("nDims") |
|
164
|
|
|
shape = self.data_info.get('shape') |
|
165
|
|
|
if nDims: |
|
166
|
|
|
if len(shape) != nDims: |
|
167
|
|
|
error_msg = ("The number of axis labels, %d, does not " |
|
168
|
|
|
"coincide with the number of data " |
|
169
|
|
|
"dimensions %d." % (nDims, len(shape))) |
|
170
|
|
|
raise Exception(error_msg) |
|
171
|
|
|
|
|
172
|
|
|
def _set_name(self, name): |
|
173
|
|
|
self.data_info.set('name', name) |
|
174
|
|
|
|
|
175
|
|
|
def get_name(self, orig=False): |
|
176
|
|
|
""" Get data name. |
|
177
|
|
|
|
|
178
|
|
|
:keyword bool orig: Set this flag to true to return the original cloned |
|
179
|
|
|
dataset name if this dataset is a clone |
|
180
|
|
|
:returns: the name associated with the dataset |
|
181
|
|
|
:rtype: str |
|
182
|
|
|
""" |
|
183
|
|
|
if orig: |
|
184
|
|
|
dinfo = self.data_info.get_dictionary() |
|
185
|
|
|
return dinfo['clone'] if 'clone' in dinfo.keys() else dinfo['name'] |
|
186
|
|
|
return self.data_info.get('name') |
|
187
|
|
|
|
|
188
|
|
|
def __get_available_pattern_list(self): |
|
189
|
|
|
""" Get a list of ALL pattern names that are currently allowed in the |
|
190
|
|
|
framework. |
|
191
|
|
|
""" |
|
192
|
|
|
pattern_list = dsu.get_available_pattern_types() |
|
193
|
|
|
return pattern_list |
|
194
|
|
|
|
|
195
|
|
|
def add_pattern(self, dtype, **kwargs): |
|
196
|
|
|
""" Add a pattern. |
|
197
|
|
|
|
|
198
|
|
|
:params str dtype: The *type* of pattern to add, which can be anything |
|
199
|
|
|
from the :const:`savu.data.data_structures.utils.pattern_list` |
|
200
|
|
|
:const:`pattern_list` |
|
201
|
|
|
:data:`savu.data.data_structures.utils.pattern_list` |
|
202
|
|
|
:data:`pattern_list`: |
|
203
|
|
|
:keyword tuple core_dims: Dimension indices of core dimensions |
|
204
|
|
|
:keyword tuple slice_dims: Dimension indices of slice dimensions |
|
205
|
|
|
""" |
|
206
|
|
|
if dtype in self.pattern_list: |
|
207
|
|
|
nDims = 0 |
|
208
|
|
|
for args in kwargs: |
|
209
|
|
|
dlen = len(kwargs[args]) |
|
210
|
|
|
if not dlen: |
|
211
|
|
|
raise Exception("Pattern Error: Pattern %s must have at" |
|
212
|
|
|
" least one %s" % (dtype, args)) |
|
213
|
|
|
nDims += len(kwargs[args]) |
|
214
|
|
|
self.data_info.set(['data_patterns', dtype, args], |
|
215
|
|
|
kwargs[args]) |
|
216
|
|
|
|
|
217
|
|
|
self.__convert_pattern_dimensions(dtype) |
|
218
|
|
|
if self.get_shape(): |
|
219
|
|
|
diff = len(self.get_shape()) - nDims |
|
220
|
|
|
if diff: |
|
221
|
|
|
pattern = {dtype: self.get_data_patterns()[dtype]} |
|
222
|
|
|
self._set_data_patterns(pattern) |
|
223
|
|
|
nDims += diff |
|
224
|
|
|
try: |
|
225
|
|
|
if nDims != self.data_info.get("nDims"): |
|
226
|
|
|
actualDims = self.data_info.get('nDims') |
|
227
|
|
|
err_msg = ("The pattern %s has an incorrect number of " |
|
228
|
|
|
"dimensions: %d required but %d specified." |
|
229
|
|
|
% (dtype, actualDims, nDims)) |
|
230
|
|
|
raise Exception(err_msg) |
|
231
|
|
|
except KeyError: |
|
232
|
|
|
self.data_info.set('nDims', nDims) |
|
233
|
|
|
else: |
|
234
|
|
|
raise Exception("The data pattern '%s'does not exist. Please " |
|
235
|
|
|
"choose from the following list: \n'%s'", |
|
236
|
|
|
dtype, str(self.pattern_list)) |
|
237
|
|
|
|
|
238
|
|
|
def add_volume_patterns(self, x, y, z): |
|
239
|
|
|
""" Adds volume patterns |
|
240
|
|
|
|
|
241
|
|
|
:params int x: dimension to be associated with x-axis |
|
242
|
|
|
:params int y: dimension to be associated with y-axis |
|
243
|
|
|
:params int z: dimension to be associated with z-axis |
|
244
|
|
|
""" |
|
245
|
|
|
self.add_pattern("VOLUME_XZ", **self.__get_dirs_for_volume(x, z, y)) |
|
246
|
|
|
|
|
247
|
|
|
if y: |
|
248
|
|
|
self.add_pattern( |
|
249
|
|
|
"VOLUME_YZ", **self.__get_dirs_for_volume(y, z, x)) |
|
250
|
|
|
self.add_pattern( |
|
251
|
|
|
"VOLUME_XY", **self.__get_dirs_for_volume(x, y, z)) |
|
252
|
|
|
|
|
253
|
|
|
if self.data_info.get("nDims") > 3 and y: |
|
254
|
|
|
self.add_pattern("VOLUME_3D", **self.__get_dirs_for_volume_3D()) |
|
255
|
|
|
|
|
256
|
|
|
def __get_dirs_for_volume(self, dim1, dim2, sdir, dim3=None): |
|
257
|
|
|
""" Calculate core_dir and slice_dir for a volume pattern. |
|
258
|
|
|
""" |
|
259
|
|
|
all_dims = range(self.data_info.get("nDims")) |
|
260
|
|
|
vol_dict = {} |
|
261
|
|
|
vol_dict['core_dims'] = (dim1, dim2) |
|
262
|
|
|
slice_dir = [sdir] if type(sdir) is int else [] |
|
263
|
|
|
for ddir in all_dims: |
|
264
|
|
|
if ddir not in [dim1, dim2, sdir]: |
|
265
|
|
|
slice_dir.append(ddir) |
|
266
|
|
|
vol_dict['slice_dims'] = tuple(slice_dir) |
|
267
|
|
|
return vol_dict |
|
268
|
|
|
|
|
269
|
|
|
def __get_dirs_for_volume_3D(self): |
|
270
|
|
|
# create volume 3D pattern here |
|
271
|
|
|
patterns = self.get_data_patterns() |
|
272
|
|
|
cdim = [] |
|
273
|
|
|
for v in ['VOLUME_YZ', 'VOLUME_XY', 'VOLUME_XZ']: |
|
274
|
|
|
cdim += (patterns[v]['core_dims']) |
|
275
|
|
|
|
|
276
|
|
|
cdim = set(cdim) |
|
277
|
|
|
sdim = tuple(set(range(self.data_info.get("nDims"))).difference(cdim)) |
|
278
|
|
|
return {"core_dims": tuple(cdim), "slice_dims": sdim} |
|
279
|
|
|
|
|
280
|
|
|
def set_axis_labels(self, *args): |
|
281
|
|
|
""" Set the axis labels associated with each data dimension. |
|
282
|
|
|
|
|
283
|
|
|
:arg str: Each arg should be of the form ``name.unit``. If ``name`` is\ |
|
284
|
|
|
a data_obj.meta_data entry, it will be output to the final .nxs file. |
|
285
|
|
|
""" |
|
286
|
|
|
self.data_info.set('nDims', len(args)) |
|
287
|
|
|
axis_labels = [] |
|
288
|
|
|
for arg in args: |
|
289
|
|
|
if isinstance(arg, dict): |
|
290
|
|
|
axis_labels.append(arg) |
|
291
|
|
|
else: |
|
292
|
|
|
try: |
|
293
|
|
|
axis = arg.split('.') |
|
294
|
|
|
axis_labels.append({axis[0]: axis[1]}) |
|
295
|
|
|
except: |
|
296
|
|
|
# data arrives here, but that may be an error |
|
297
|
|
|
pass |
|
298
|
|
|
self.data_info.set('axis_labels', axis_labels) |
|
299
|
|
|
|
|
300
|
|
|
def get_axis_labels(self): |
|
301
|
|
|
""" Get axis labels. |
|
302
|
|
|
|
|
303
|
|
|
:returns: Axis labels |
|
304
|
|
|
:rtype: list(dict) |
|
305
|
|
|
""" |
|
306
|
|
|
return self.data_info.get('axis_labels') |
|
307
|
|
|
|
|
308
|
|
|
def get_data_dimension_by_axis_label(self, name, contains=False, exists=False): |
|
309
|
|
|
""" Get the dimension of the data associated with a particular |
|
310
|
|
|
axis_label. |
|
311
|
|
|
|
|
312
|
|
|
:param str name: The name of the axis_label |
|
313
|
|
|
:keyword bool contains: Set this flag to true if the name is only part |
|
314
|
|
|
of the axis_label name |
|
315
|
|
|
:keyword bool exists: Set to True to return False rather than Exception |
|
316
|
|
|
:returns: The associated axis number |
|
317
|
|
|
:rtype: int |
|
318
|
|
|
""" |
|
319
|
|
|
axis_labels = self.data_info.get('axis_labels') |
|
320
|
|
|
for i in range(len(axis_labels)): |
|
321
|
|
|
if contains is True: |
|
322
|
|
|
for names in list(axis_labels[i].keys()): |
|
323
|
|
|
if name in names: |
|
324
|
|
|
return i |
|
325
|
|
|
else: |
|
326
|
|
|
if name in list(axis_labels[i].keys()): |
|
327
|
|
|
return i |
|
328
|
|
|
if exists: |
|
329
|
|
|
return False |
|
330
|
|
|
raise Exception("Cannot find the specifed axis label.") |
|
331
|
|
|
|
|
332
|
|
|
def _finalise_patterns(self): |
|
333
|
|
|
""" Adds a main axis (fastest changing) to SINOGRAM and PROJECTON |
|
334
|
|
|
patterns. |
|
335
|
|
|
""" |
|
336
|
|
|
check = 0 |
|
337
|
|
|
check += self.__check_pattern('SINOGRAM') |
|
338
|
|
|
check += self.__check_pattern('PROJECTION') |
|
339
|
|
|
|
|
340
|
|
|
if check == 2 and len(self.get_shape()) > 2: |
|
341
|
|
|
self.__set_main_axis('SINOGRAM') |
|
342
|
|
|
self.__set_main_axis('PROJECTION') |
|
343
|
|
|
|
|
344
|
|
|
def __check_pattern(self, pattern_name): |
|
345
|
|
|
""" Check if a pattern exists. |
|
346
|
|
|
""" |
|
347
|
|
|
patterns = self.get_data_patterns() |
|
348
|
|
|
try: |
|
349
|
|
|
patterns[pattern_name] |
|
350
|
|
|
except KeyError: |
|
351
|
|
|
return 0 |
|
352
|
|
|
return 1 |
|
353
|
|
|
|
|
354
|
|
|
def __convert_pattern_dimensions(self, dtype): |
|
355
|
|
|
""" Replace negative indices in pattern kwargs. |
|
356
|
|
|
""" |
|
357
|
|
|
pattern = self.get_data_patterns()[dtype] |
|
358
|
|
|
if 'main_dir' in list(pattern.keys()): |
|
359
|
|
|
del pattern['main_dir'] |
|
360
|
|
|
|
|
361
|
|
|
nDims = sum([len(i) for i in list(pattern.values())]) |
|
362
|
|
|
for p in pattern: |
|
363
|
|
|
ddirs = pattern[p] |
|
364
|
|
|
pattern[p] = self._non_negative_directions(ddirs, nDims) |
|
365
|
|
|
|
|
366
|
|
|
def _non_negative_directions(self, ddirs, nDims): |
|
367
|
|
|
""" Replace negative indexing values with positive counterparts. |
|
368
|
|
|
|
|
369
|
|
|
:params tuple(int) ddirs: data dimension indices |
|
370
|
|
|
:params int nDims: The number of data dimensions |
|
371
|
|
|
:returns: non-negative data dimension indices |
|
372
|
|
|
:rtype: tuple(int) |
|
373
|
|
|
""" |
|
374
|
|
|
index = [i for i in range(len(ddirs)) if ddirs[i] < 0] |
|
375
|
|
|
list_ddirs = list(ddirs) |
|
376
|
|
|
for i in index: |
|
377
|
|
|
list_ddirs[i] = nDims + ddirs[i] |
|
378
|
|
|
return tuple(list_ddirs) |
|
379
|
|
|
|
|
380
|
|
|
def __set_main_axis(self, pname): |
|
381
|
|
|
""" Set the ``main_dir`` pattern kwarg to the fastest changing |
|
382
|
|
|
dimension |
|
383
|
|
|
""" |
|
384
|
|
|
patterns = self.get_data_patterns() |
|
385
|
|
|
n1 = 'PROJECTION' if pname == 'SINOGRAM' else 'SINOGRAM' |
|
386
|
|
|
d1 = patterns[n1]['core_dims'] |
|
387
|
|
|
d2 = patterns[pname]['slice_dims'] |
|
388
|
|
|
tdir = set(d1).intersection(set(d2)) |
|
389
|
|
|
|
|
390
|
|
|
# this is required when a single sinogram exists in the mm case, and a |
|
391
|
|
|
# dimension is added via parameter tuning. |
|
392
|
|
|
if not tdir: |
|
393
|
|
|
tdir = [d2[0]] |
|
394
|
|
|
|
|
395
|
|
|
self.data_info.set(['data_patterns', pname, 'main_dir'], list(tdir)[0]) |
|
396
|
|
|
|
|
397
|
|
|
def get_axis_label_keys(self): |
|
398
|
|
|
""" Get axis_label names |
|
399
|
|
|
|
|
400
|
|
|
:returns: A list containing associated axis names for each dimension |
|
401
|
|
|
:rtype: list(str) |
|
402
|
|
|
""" |
|
403
|
|
|
axis_labels = self.data_info.get('axis_labels') |
|
404
|
|
|
axis_label_keys = [] |
|
405
|
|
|
for labels in axis_labels: |
|
406
|
|
|
for key in list(labels.keys()): |
|
407
|
|
|
axis_label_keys.append(key) |
|
408
|
|
|
return axis_label_keys |
|
409
|
|
|
|
|
410
|
|
|
def amend_axis_label_values(self, slice_list): |
|
411
|
|
|
""" Amend all axis label values based on the slice_list parameter.\ |
|
412
|
|
|
This is required if the data is reduced. |
|
413
|
|
|
""" |
|
414
|
|
|
axis_labels = self.get_axis_labels() |
|
415
|
|
|
for i in range(len(slice_list)): |
|
416
|
|
|
label = list(axis_labels[i].keys())[0] |
|
417
|
|
|
if label in list(self.meta_data.get_dictionary().keys()): |
|
418
|
|
|
values = self.meta_data.get(label) |
|
419
|
|
|
preview_sl = [slice(None)]*len(values.shape) |
|
420
|
|
|
preview_sl[0] = slice_list[i] |
|
421
|
|
|
self.meta_data.set(label, values[tuple(preview_sl)]) |
|
422
|
|
|
|
|
423
|
|
|
def get_core_dimensions(self): |
|
424
|
|
|
""" Get the core data dimensions associated with the current pattern. |
|
425
|
|
|
|
|
426
|
|
|
:returns: value associated with pattern key ``core_dims`` |
|
427
|
|
|
:rtype: tuple |
|
428
|
|
|
""" |
|
429
|
|
|
return list(self._get_plugin_data().get_pattern().values())[0]['core_dims'] |
|
430
|
|
|
|
|
431
|
|
|
def get_slice_dimensions(self): |
|
432
|
|
|
""" Get the slice data dimensions associated with the current pattern. |
|
433
|
|
|
|
|
434
|
|
|
:returns: value associated with pattern key ``slice_dims`` |
|
435
|
|
|
:rtype: tuple |
|
436
|
|
|
""" |
|
437
|
|
|
return list(self._get_plugin_data().get_pattern().values())[0]['slice_dims'] |
|
438
|
|
|
|
|
439
|
|
|
def get_itemsize(self): |
|
440
|
|
|
""" Returns bytes per entry """ |
|
441
|
|
|
dtype = self.get_dtype() |
|
442
|
|
|
if not dtype: |
|
443
|
|
|
self.set_dtype(None) |
|
444
|
|
|
dtype = self.get_dtype() |
|
445
|
|
|
return self.get_dtype().itemsize |
|
446
|
|
|
|