1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
""" |
16
|
|
|
.. module:: base_fluo_fitter |
17
|
|
|
:platform: Unix |
18
|
|
|
:synopsis: a base fitting plugin |
19
|
|
|
|
20
|
|
|
.. moduleauthor:: Aaron Parsons <[email protected]> |
21
|
|
|
|
22
|
|
|
""" |
23
|
|
|
|
24
|
|
|
import logging |
25
|
|
|
from savu.plugins.plugin import Plugin |
26
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
27
|
|
|
import peakutils as pe |
28
|
|
|
import numpy as np |
29
|
|
|
import xraylib as xl |
30
|
|
|
from flupy.algorithms.xrf_calculations.transitions_and_shells import \ |
31
|
|
|
shells, transitions |
32
|
|
|
from flupy.algorithms.xrf_calculations.escape import * |
33
|
|
|
from flupy.xrf_data_handling import XRFDataset |
34
|
|
|
from copy import deepcopy |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class BaseFluoFitter(Plugin, CpuPlugin): |
38
|
|
|
""" |
39
|
|
|
This plugin fits peaks. Either XRD or XRF for now. |
40
|
|
|
:param in_datasets: Create a list of the dataset(s). Default: []. |
41
|
|
|
:param out_datasets: A. Default: ["FitWeights", "FitWidths", "FitAreas", "residuals"]. |
42
|
|
|
:param width_guess: An initial guess at the width. Default: 0.02. |
43
|
|
|
:param mono_energy: the mono energy. Default: 18.0. |
44
|
|
|
:param peak_shape: Which shape do you want. Default: "gaussian". |
45
|
|
|
:param pileup_cutoff_keV: The cut off. Default: 5.5. |
46
|
|
|
:param include_pileup: Include pileup. Default: 1. |
47
|
|
|
:param include_escape: Include escape. Default: 1. |
48
|
|
|
:param fitted_energy_range_keV: The fitted energy range. Default: [2.,18.]. |
49
|
|
|
:param elements: The fitted elements. Default: ['Zn','Cu', 'Ar']. |
50
|
|
|
""" |
51
|
|
|
|
52
|
|
|
def __init__(self, name="BaseFluoFitter"): |
53
|
|
|
super(BaseFluoFitter, self).__init__(name) |
54
|
|
|
|
55
|
|
|
def base_pre_process(self): |
56
|
|
|
in_meta_data = self.get_in_meta_data()[0] |
57
|
|
|
try: |
58
|
|
|
_foo = in_meta_data.get("PeakIndex")[0] |
59
|
|
|
logging.debug('Using the positions in the peak index') |
60
|
|
|
except KeyError: |
61
|
|
|
logging.debug("No Peak Index in the metadata") |
62
|
|
|
logging.debug("Calculating the positions from energy") |
63
|
|
|
# idx = self.setPositions(in_meta_data) |
64
|
|
|
logging.debug("The index is"+str(self.idx)) |
65
|
|
|
in_meta_data.set('PeakIndex', self.idx) |
66
|
|
|
in_meta_data.set('PeakEnergy', self.axis[self.idx]) |
67
|
|
|
|
68
|
|
|
def setup(self): |
69
|
|
|
# set up the output datasets that are created by the plugin |
70
|
|
|
logging.debug('setting up the fluorescence fitting') |
71
|
|
|
in_dataset, out_datasets = self.get_datasets() |
72
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
73
|
|
|
in_meta_data = in_dataset[0].meta_data |
74
|
|
|
|
75
|
|
|
shape = in_dataset[0].get_shape() |
76
|
|
|
in_pData[0].plugin_data_setup('SPECTRUM', self.get_max_frames()) |
77
|
|
|
|
78
|
|
|
axis_labels = ['-1.PeakIndex.pixel.unit'] |
79
|
|
|
pattern_list = ['SINOGRAM', 'PROJECTION'] |
80
|
|
|
|
81
|
|
|
fitAreas = out_datasets[0] |
82
|
|
|
fitWidths = out_datasets[1] |
83
|
|
|
fitHeights = out_datasets[2] |
84
|
|
|
self.length = shape[-1] |
85
|
|
|
idx = self.setPositions(in_meta_data) |
86
|
|
|
logging.debug("in the setup the index is"+str(idx)) |
87
|
|
|
numpeaks = len(idx) |
88
|
|
|
new_shape = shape[:-1] + (numpeaks,) |
89
|
|
|
|
90
|
|
|
channel = {'core_dims': (-1,), 'slice_dims': list(range(len(shape)-1))} |
91
|
|
|
fitAreas.create_dataset(patterns={in_dataset[0]: pattern_list}, |
92
|
|
|
axis_labels={in_dataset[0]: axis_labels}, |
93
|
|
|
shape=new_shape) |
94
|
|
|
fitAreas.add_pattern("CHANNEL", **channel) |
95
|
|
|
out_pData[0].plugin_data_setup('CHANNEL', self.get_max_frames()) |
96
|
|
|
|
97
|
|
|
fitWidths.create_dataset(patterns={in_dataset[0]: pattern_list}, |
98
|
|
|
axis_labels={in_dataset[0]: axis_labels}, |
99
|
|
|
shape=new_shape) |
100
|
|
|
fitWidths.add_pattern("CHANNEL", **channel) |
101
|
|
|
out_pData[1].plugin_data_setup('CHANNEL', self.get_max_frames()) |
102
|
|
|
|
103
|
|
|
fitHeights.create_dataset(patterns={in_dataset[0]: pattern_list}, |
104
|
|
|
axis_labels={in_dataset[0]: axis_labels}, |
105
|
|
|
shape=new_shape) |
106
|
|
|
fitHeights.add_pattern("CHANNEL", **channel) |
107
|
|
|
out_pData[2].plugin_data_setup('CHANNEL', self.get_max_frames()) |
108
|
|
|
|
109
|
|
|
residuals = out_datasets[3] |
110
|
|
|
residuals.create_dataset(in_dataset[0]) |
111
|
|
|
residuals.set_shape(shape[:-1]+(len(self.axis),)) |
112
|
|
|
out_pData[3].plugin_data_setup('SPECTRUM', self.get_max_frames()) |
113
|
|
|
|
114
|
|
|
for i in range(len(out_datasets)): |
115
|
|
|
out_datasets[i].meta_data = deepcopy(in_meta_data) |
116
|
|
|
mData = out_datasets[i].meta_data |
117
|
|
|
mData.set("PeakEnergy", self.axis[self.idx]) |
118
|
|
|
mData.set('PeakIndex', self.idx) |
119
|
|
|
|
120
|
|
|
def setPositions(self, in_meta_data): |
121
|
|
|
paramdict = XRFDataset().paramdict |
122
|
|
|
paramdict["FitParams"]["pileup_cutoff_keV"] = \ |
123
|
|
|
self.parameters["pileup_cutoff_keV"] |
124
|
|
|
paramdict["FitParams"]["include_pileup"] = \ |
125
|
|
|
self.parameters["include_pileup"] |
126
|
|
|
paramdict["FitParams"]["include_escape"] = \ |
127
|
|
|
self.parameters["include_escape"] |
128
|
|
|
paramdict["FitParams"]["fitted_energy_range_keV"] = \ |
129
|
|
|
self.parameters["fitted_energy_range_keV"] |
130
|
|
|
if self.parameters['mono_energy'] is None: |
131
|
|
|
paramdict["Experiment"]["incident_energy_keV"] = \ |
132
|
|
|
in_meta_data.get("mono_energy") |
133
|
|
|
else: |
134
|
|
|
paramdict["Experiment"]["incident_energy_keV"] = \ |
135
|
|
|
self.parameters['mono_energy'] |
136
|
|
|
paramdict["Experiment"]["elements"] = \ |
137
|
|
|
self.parameters["elements"] |
138
|
|
|
engy = self.findLines(paramdict) |
139
|
|
|
# make it an index since this is what find peak will also give us |
140
|
|
|
# print 'basefluo meta is:'+str(in_meta_data.get_dictionary().keys()) |
141
|
|
|
axis = self.axis = in_meta_data.get("energy") |
142
|
|
|
dq = axis[1]-axis[0] |
143
|
|
|
logging.debug("the peak energies are:"+str(engy)) |
144
|
|
|
logging.debug("the offset is"+str(axis[0])) |
145
|
|
|
self.idx = np.round((engy-axis[0])/dq).astype(int) |
146
|
|
|
|
147
|
|
|
return self.idx |
148
|
|
|
|
149
|
|
|
def findLines(self, paramdict=XRFDataset().paramdict): |
150
|
|
|
""" |
151
|
|
|
Calculates the line energies to fit |
152
|
|
|
""" |
153
|
|
|
# Incident Energy used in the experiment |
154
|
|
|
# Energy range to use for fitting |
155
|
|
|
pileup_cut_off = paramdict["FitParams"]["pileup_cutoff_keV"] |
156
|
|
|
include_pileup = paramdict["FitParams"]["include_pileup"] |
157
|
|
|
include_escape = paramdict["FitParams"]["include_escape"] |
158
|
|
|
fitting_range = paramdict["FitParams"]["fitted_energy_range_keV"] |
159
|
|
|
# x = paramdict["FitParams"]["mca_energies_used"] |
160
|
|
|
energy = paramdict["Experiment"]["incident_energy_keV"] |
161
|
|
|
detectortype = 'Vortex_SDD_Xspress' |
162
|
|
|
fitelements = paramdict["Experiment"]["elements"] |
163
|
|
|
peakpos = [] |
164
|
|
|
escape_peaks = [] |
165
|
|
|
for _j, el in enumerate(fitelements): |
166
|
|
|
z = xl.SymbolToAtomicNumber(str(el)) |
167
|
|
|
for i, shell in enumerate(shells): |
168
|
|
|
if(xl.EdgeEnergy(z, shell) < energy - 0.5): |
169
|
|
|
linepos = 0.0 |
170
|
|
|
count = 0.0 |
171
|
|
|
for line in transitions[i]: |
172
|
|
|
en = xl.LineEnergy(z, line) |
173
|
|
|
if(en > 0.0): |
174
|
|
|
linepos += en |
175
|
|
|
count += 1.0 |
176
|
|
|
if(count == 0.0): |
177
|
|
|
break |
178
|
|
|
linepos = linepos // count |
179
|
|
|
if(linepos > fitting_range[0] and |
180
|
|
|
linepos < fitting_range[1]): |
181
|
|
|
peakpos.append(linepos) |
182
|
|
|
peakpos = np.array(peakpos) |
183
|
|
|
too_low = set(list(peakpos[peakpos > fitting_range[0]])) |
184
|
|
|
too_high = set(list(peakpos[peakpos < fitting_range[1]])) |
185
|
|
|
bar = list(too_low and too_high) |
186
|
|
|
bar = np.unique(bar) |
187
|
|
|
peakpos = list(bar) |
188
|
|
|
peaks = [] |
189
|
|
|
peaks.extend(peakpos) |
190
|
|
|
if(include_escape): |
191
|
|
|
for i in range(len(peakpos)): |
192
|
|
|
escape_energy = calc_escape_energy(peakpos[i], detectortype)[0] |
|
|
|
|
193
|
|
|
if (escape_energy > fitting_range[0]): |
194
|
|
|
if (escape_energy < fitting_range[1]): |
195
|
|
|
escape_peaks.extend([escape_energy]) |
196
|
|
|
# print escape_peaks |
197
|
|
|
peaks.extend(escape_peaks) |
198
|
|
|
|
199
|
|
|
if(include_pileup): # applies just to the fluorescence lines |
200
|
|
|
pileup_peaks = [] |
201
|
|
|
peakpos1 = np.array(peakpos) |
202
|
|
|
peakpos_high = peakpos1[peakpos1 > pileup_cut_off] |
203
|
|
|
peakpos_high = list(peakpos_high) |
204
|
|
|
for i in range(len(peakpos_high)): |
205
|
|
|
foo = [peakpos_high[i] + x for x in peakpos_high[i:]] |
206
|
|
|
foo = np.array(foo) |
207
|
|
|
pileup_peaks.extend(foo) |
208
|
|
|
pileup_peaks = np.unique(sorted(pileup_peaks)) |
209
|
|
|
peaks.extend(pileup_peaks) |
210
|
|
|
peakpos = peaks |
211
|
|
|
peakpos = np.array(peakpos) |
212
|
|
|
too_low = set(list(peakpos[peakpos > fitting_range[0]])) |
213
|
|
|
too_high = set(list(peakpos[peakpos < fitting_range[1] - 0.5])) |
214
|
|
|
bar = list(too_low and too_high) |
215
|
|
|
bar = np.unique(bar) |
216
|
|
|
peakpos = list(bar) |
217
|
|
|
peakpos = np.unique(peakpos) |
218
|
|
|
# print peakpos |
219
|
|
|
return peakpos |
220
|
|
|
|
221
|
|
View Code Duplication |
def getAreas(self, fun, x, positions, fitmatrix): |
|
|
|
|
222
|
|
|
rest = fitmatrix |
223
|
|
|
numargsinp = self.getFitFunctionNumArgs(str(fun.__name__)) # 2 in |
224
|
|
|
npts = len(fitmatrix) // numargsinp |
225
|
|
|
weights = rest[:npts] |
226
|
|
|
widths = rest[npts:2*npts] |
227
|
|
|
areas = [] |
228
|
|
|
for ii in range(len(weights)): |
229
|
|
|
areas.append(np.sum(fun(weights[ii], |
230
|
|
|
widths[ii], |
231
|
|
|
x, |
232
|
|
|
positions[ii], |
233
|
|
|
))) |
234
|
|
|
return weights, widths, np.array(areas) |
235
|
|
|
|
236
|
|
|
def getFitFunctionNumArgs(self,key): |
237
|
|
|
self.lookup = { |
238
|
|
|
"lorentzian": 2, |
239
|
|
|
"gaussian": 2 |
240
|
|
|
} |
241
|
|
|
return self.lookup[key] |
242
|
|
|
|
243
|
|
|
def get_max_frames(self): |
244
|
|
|
return 'single' |
245
|
|
|
|
246
|
|
|
def nOutput_datasets(self): |
247
|
|
|
return 4 |
248
|
|
|
|
249
|
|
|
def getFitFunction(self,key): |
250
|
|
|
self.lookup = { |
251
|
|
|
"lorentzian": lorentzian, |
252
|
|
|
"gaussian": gaussian |
253
|
|
|
} |
254
|
|
|
return self.lookup[key] |
255
|
|
|
|
256
|
|
|
def _resid(self, p, fun, y, x, pos): |
257
|
|
|
r = y-self._spectrum_sum(fun, x, pos, *p) |
258
|
|
|
|
259
|
|
|
return r |
260
|
|
|
|
261
|
|
View Code Duplication |
def dfunc(self, p, fun, y, x, pos): |
|
|
|
|
262
|
|
|
if fun.__name__ == 'gaussian' or fun.__name__ == 'lorentzian': # took the lorentzian out. Weird |
263
|
|
|
rest = p |
264
|
|
|
npts = len(p) // 2 |
265
|
|
|
a = rest[:npts] |
266
|
|
|
sig = rest[npts:2*npts] |
267
|
|
|
mu = pos |
268
|
|
|
if fun.__name__ == 'gaussian': |
269
|
|
|
da = self.spectrum_sum_dfun(fun, 1./a, x, mu, *p) |
270
|
|
|
dsig_mult = np.zeros((npts, len(x))) |
271
|
|
|
for i in range(npts): |
272
|
|
|
dsig_mult[i] = ((x-mu[i])**2) / sig[i]**3 |
273
|
|
|
dsig = self.spectrum_sum_dfun(fun, dsig_mult, x, mu, *p) |
274
|
|
|
op = np.concatenate([-da, -dsig]) |
275
|
|
|
elif fun.__name__ == 'lorentzian': |
276
|
|
|
da = self.spectrum_sum_dfun(fun, 1./a, x, mu, *p) |
277
|
|
|
dsig = np.zeros((npts, len(x))) |
278
|
|
|
for i in range(npts): |
279
|
|
|
nom = 8 * a[i] * sig[i] * (x - mu[i]) ** 2 |
280
|
|
|
denom = (sig[i]**2 + 4.0 * (x - mu[i])**2)**2 |
281
|
|
|
dsig[i] = nom / denom |
282
|
|
|
op = np.concatenate([-da, -dsig]) |
283
|
|
|
else: |
284
|
|
|
op = None |
285
|
|
|
return op |
|
|
|
|
286
|
|
|
|
287
|
|
|
def _spectrum_sum(self, fun, x, positions, *p): |
288
|
|
|
rest = np.abs(p) |
289
|
|
|
npts = len(p) // 2 |
290
|
|
|
weights = rest[:npts] |
291
|
|
|
widths = rest[npts:2*npts] |
292
|
|
|
spec = np.zeros((len(x),)) |
293
|
|
|
for ii in range(len(weights)): |
294
|
|
|
spec += fun(weights[ii], widths[ii], x, positions[ii]) |
295
|
|
|
return spec |
296
|
|
|
|
297
|
|
View Code Duplication |
def spectrum_sum_dfun(self, fun, multiplier, x, pos, *p): |
|
|
|
|
298
|
|
|
rest = p |
299
|
|
|
npts = len(p) // 2 |
300
|
|
|
weights = rest[:npts] |
301
|
|
|
widths = rest[npts:2*npts] |
302
|
|
|
positions = pos |
303
|
|
|
# print(len(positions)) |
304
|
|
|
spec = np.zeros((npts, len(x))) |
305
|
|
|
#print "len x is "+str(len(spec)) |
306
|
|
|
# print len(spec), type(spec) |
307
|
|
|
# print len(positions), type(positions) |
308
|
|
|
# print len(weights), type(weights) |
309
|
|
|
for ii in range(len(weights)): |
310
|
|
|
spec[ii] = multiplier[ii]*fun(weights[ii], |
311
|
|
|
widths[ii], |
312
|
|
|
x, positions[ii]) |
313
|
|
|
return spec |
314
|
|
|
|
315
|
|
|
def lorentzian(a, w, x, c): |
316
|
|
|
y = a / (1.0 + (2.0 * (c - x) / w) ** 2) |
317
|
|
|
return y |
318
|
|
|
|
319
|
|
|
|
320
|
|
|
def gaussian(a, w, x, c): |
321
|
|
|
return pe.gaussian(x, a, c, w) |
322
|
|
|
|
323
|
|
|
|
324
|
|
|
|