|
1
|
|
|
import matplotlib.pyplot as plt |
|
2
|
|
|
import pandas as pd |
|
3
|
|
|
import h5py as h5 |
|
4
|
|
|
import numpy as np |
|
5
|
|
|
|
|
6
|
|
|
class StatsUtils(object): |
|
7
|
|
|
|
|
8
|
|
|
_pattern_dict = {"projection": ["SINOGRAM", "PROJECTION", "TANGENTOGRAM", "4D_SCAN", "SINOMOVIE"], |
|
9
|
|
|
"reconstruction": ["VOLUME_YZ", "VOLUME_XZ", "VOLUME_XY", "VOLUME_3D"]} |
|
10
|
|
|
_stats_list = ["max", "min", "mean", "mean_std_dev", "median_std_dev", "RMSD"] |
|
11
|
|
|
|
|
12
|
|
|
def generate_figures(self, filepath, savepath): |
|
13
|
|
|
f = h5.File(filepath, 'r') |
|
14
|
|
|
stats_dict, index_dict = self._get_dicts_for_graphs(f) |
|
15
|
|
|
f.close() |
|
16
|
|
|
p_stats = pd.DataFrame(stats_dict["projection"], index_dict["projection"]["max"]) |
|
17
|
|
|
r_stats = pd.DataFrame(stats_dict["reconstruction"], index_dict["reconstruction"]["max"]) |
|
18
|
|
|
all_stats = pd.concat([p_stats, r_stats], keys=["Projection", "Reconstruction"]) |
|
19
|
|
|
all_stats.to_html(f"{savepath}/stats_table.html") # create table of all stats for all plugins |
|
20
|
|
|
|
|
21
|
|
|
stats_dict, array_plugins = self._remove_arrays(stats_dict, index_dict) |
|
22
|
|
|
|
|
23
|
|
|
p_stats_new = pd.DataFrame(stats_dict["projection"], index_dict["projection"]["max"]) |
|
24
|
|
|
r_stats_new = pd.DataFrame(stats_dict["reconstruction"], index_dict["reconstruction"]["max"]) |
|
25
|
|
|
|
|
26
|
|
|
colours = ["red", "blue", "green", "black", "purple", "brown"] |
|
27
|
|
|
# creating projection stats figure |
|
28
|
|
|
new_p_index = [] |
|
29
|
|
|
p_legend = "" |
|
30
|
|
|
for ind in p_stats_new.index: |
|
31
|
|
|
new_p_index.append(ind[0]) # change x ticks to only be plugin numbers rather than names (for space) |
|
32
|
|
|
p_legend += f"{ind}\n" |
|
33
|
|
|
p_stats_new.index = new_p_index |
|
34
|
|
|
fig, ax = plt.subplots(3, 2, figsize=(11, 9), dpi=320, facecolor="azure") |
|
35
|
|
|
i = 0 |
|
36
|
|
|
for row in ax: |
|
37
|
|
|
for axis in row: |
|
38
|
|
|
stat = self._stats_list[i] |
|
39
|
|
|
axis.plot(p_stats_new[stat], "x-", color=colours[i]) |
|
40
|
|
|
for plugin in array_plugins["projection"]: # adding 'error' bars for plugins with different values due to parameter changes |
|
41
|
|
|
my_max = max(p_stats[stat][plugin]) |
|
42
|
|
|
my_min = min(p_stats[stat][plugin]) |
|
43
|
|
|
middle = (my_max + my_min) / 2 |
|
44
|
|
|
my_range = my_max - my_min |
|
45
|
|
|
axis.errorbar(int(plugin[0]) - len(p_stats_new) + 1, middle, yerr=[my_range], capsize=5) |
|
46
|
|
|
if i == 1: |
|
47
|
|
|
maxx = len(p_stats_new[stat]) * 1.08 - 1 |
|
48
|
|
|
maxy = max(p_stats_new[stat]) |
|
49
|
|
|
axis.text(maxx, maxy, p_legend, ha="left", va="top", |
|
50
|
|
|
bbox=dict(boxstyle="round", facecolor="red", alpha=0.4)) |
|
51
|
|
|
stat.replace("_", " ") |
|
52
|
|
|
axis.set_title(stat) |
|
53
|
|
|
axis.grid(True) |
|
54
|
|
|
i += 1 |
|
55
|
|
|
fig.suptitle("Projection Stats", fontsize="x-large") |
|
56
|
|
|
plt.savefig(f"{savepath}/projection_stats.png", bbox_inches="tight") |
|
57
|
|
|
|
|
58
|
|
|
# creating reconstruction stats figure |
|
59
|
|
|
new_r_index = [] |
|
60
|
|
|
r_legend = "" |
|
61
|
|
|
for ind in r_stats_new.index: |
|
62
|
|
|
new_r_index.append(ind[0]) # change x ticks to only be plugin numbers rather than names (for space) |
|
63
|
|
|
r_legend += f"{ind}\n" |
|
64
|
|
|
r_stats_new.index = new_r_index |
|
65
|
|
|
|
|
66
|
|
|
fig, ax = plt.subplots(3, 2, figsize=(11, 9), dpi=320, facecolor="lavender") |
|
67
|
|
|
i = 0 |
|
68
|
|
|
for row in ax: |
|
69
|
|
|
for axis in row: |
|
70
|
|
|
stat = self._stats_list[i] |
|
71
|
|
|
axis.plot(r_stats_new[stat], "x-", color=colours[i]) |
|
72
|
|
|
for plugin in array_plugins["reconstruction"]: # adding 'error' bars for plugins with different values due to parameter changes |
|
73
|
|
|
my_max = max(r_stats[stat][plugin]) |
|
74
|
|
|
my_min = min(r_stats[stat][plugin]) |
|
75
|
|
|
middle = (my_max + my_min) / 2 |
|
76
|
|
|
my_range = my_max - my_min |
|
77
|
|
|
axis.errorbar(int(plugin[0]) - len(r_stats_new) + 1, middle, yerr=[my_range], capsize=5) |
|
78
|
|
|
if i == 1: |
|
79
|
|
|
maxx = len(r_stats_new[stat]) * 1.08 - 1 |
|
80
|
|
|
maxy = max(r_stats_new[stat]) |
|
81
|
|
|
axis.text(maxx, maxy, r_legend, ha="left", va="top", |
|
82
|
|
|
bbox=dict(boxstyle="round", facecolor="red", alpha=0.4)) |
|
83
|
|
|
stat = stat.replace("_", " ") |
|
84
|
|
|
axis.set_title(stat) |
|
85
|
|
|
axis.grid(True) |
|
86
|
|
|
i += 1 |
|
87
|
|
|
|
|
88
|
|
|
fig.suptitle("Reconstruction Stats", fontsize="x-large") |
|
89
|
|
|
plt.savefig(f"{savepath}/reconstruction_stats.png", bbox_inches="tight") |
|
90
|
|
|
|
|
91
|
|
|
@staticmethod |
|
92
|
|
|
def _get_dicts_for_graphs(file): |
|
93
|
|
|
stats_dict = {} |
|
94
|
|
|
index_dict = {} |
|
95
|
|
|
stats_dict["projection"] = {"max": [], "min": [], "mean": [], "mean_std_dev": [], "median_std_dev": [], |
|
96
|
|
|
"RMSD": []} |
|
97
|
|
|
stats_dict["reconstruction"] = {"max": [], "min": [], "mean": [], "mean_std_dev": [], "median_std_dev": [], |
|
98
|
|
|
"RMSD": []} |
|
99
|
|
|
index_dict["projection"] = {"max": [], "min": [], "mean": [], "mean_std_dev": [], "median_std_dev": [], |
|
100
|
|
|
"RMSD": []} |
|
101
|
|
|
index_dict["reconstruction"] = {"max": [], "min": [], "mean": [], "mean_std_dev": [], "median_std_dev": [], |
|
102
|
|
|
"RMSD": []} |
|
103
|
|
|
|
|
104
|
|
|
group = file["stats"] |
|
105
|
|
|
for space in ("projection", "reconstruction"): |
|
106
|
|
|
for index, stat in enumerate(["max", "min", "mean", "mean_std_dev", "median_std_dev", "RMSD"]): |
|
107
|
|
|
for key in list(group.keys()): |
|
108
|
|
|
if group[key].attrs.get("pattern") in StatsUtils._pattern_dict[space]: |
|
109
|
|
|
index_dict[space][stat].append(f"{key}: {group[key].attrs.get('plugin_name')}") |
|
110
|
|
|
if group[key].ndim == 1: |
|
111
|
|
|
if len(group[key]) > index: |
|
112
|
|
|
stats_dict[space][stat].append(group[key][index]) |
|
113
|
|
|
else: |
|
114
|
|
|
stats_dict[space][stat].append(None) |
|
115
|
|
|
elif group[key].ndim == 2: |
|
116
|
|
|
if len(group[key][0]) > index: |
|
117
|
|
|
stats_dict[space][stat].append(group[key][:, index]) |
|
118
|
|
|
else: |
|
119
|
|
|
stats_dict[space][stat].append(None) |
|
120
|
|
|
return stats_dict, index_dict |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
|
|
@staticmethod |
|
124
|
|
|
def _remove_arrays(stats_dict, index_dict): |
|
125
|
|
|
array_plugins = {"projection": set(()), "reconstruction": set(())} |
|
126
|
|
|
for space in list(stats_dict.keys()): |
|
127
|
|
|
for stat in list(stats_dict[space].keys()): |
|
128
|
|
|
for index, value in enumerate(stats_dict[space][stat]): |
|
129
|
|
|
if isinstance(value, np.ndarray): |
|
130
|
|
|
stats_dict[space][stat][index] = stats_dict[space][stat][index][0] |
|
131
|
|
|
array_plugins[space].add(index_dict[space][stat][index]) |
|
132
|
|
|
return stats_dict, array_plugins |
|
133
|
|
|
|
|
134
|
|
|
|
|
135
|
|
|
|