|
1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
|
2
|
|
|
# |
|
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
4
|
|
|
# you may not use this file except in compliance with the License. |
|
5
|
|
|
# You may obtain a copy of the License at |
|
6
|
|
|
# |
|
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
8
|
|
|
# |
|
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
12
|
|
|
# See the License for the specific language governing permissions and |
|
13
|
|
|
# limitations under the License. |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
.. module:: tomo_phantom_artifacts |
|
17
|
|
|
:platform: Unix |
|
18
|
|
|
:synopsis: Adding artifacts to the generated synthetic projection data using TomoPhantom |
|
19
|
|
|
|
|
20
|
|
|
.. moduleauthor:: Daniil Kazantsev <[email protected]> |
|
21
|
|
|
""" |
|
22
|
|
|
|
|
23
|
|
|
import savu.plugins.utils as pu |
|
24
|
|
|
from savu.plugins.plugin import Plugin |
|
25
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
|
26
|
|
|
from savu.plugins.utils import register_plugin |
|
27
|
|
|
|
|
28
|
|
|
import tomophantom |
|
29
|
|
|
from tomophantom.supp.artifacts import _Artifacts_ |
|
30
|
|
|
import os |
|
31
|
|
|
import numpy as np |
|
32
|
|
|
|
|
33
|
|
|
@register_plugin |
|
34
|
|
|
class TomoPhantomArtifacts(Plugin, CpuPlugin): |
|
35
|
|
|
def __init__(self): |
|
36
|
|
|
super(TomoPhantomArtifacts, self).__init__('TomoPhantomArtifacts') |
|
37
|
|
|
|
|
38
|
|
|
def setup(self): |
|
39
|
|
|
in_dataset, out_dataset = self.get_datasets() |
|
40
|
|
|
out_dataset[0].create_dataset(in_dataset[0]) |
|
41
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
|
42
|
|
|
in_pData[0].plugin_data_setup('SINOGRAM', self.get_max_frames()) |
|
43
|
|
|
out_pData[0].plugin_data_setup('SINOGRAM', self.get_max_frames()) |
|
44
|
|
|
|
|
45
|
|
|
def process_frames(self, data): |
|
46
|
|
|
sinogram = data[0] |
|
47
|
|
|
# apply a variety of artifacts to the generated data: |
|
48
|
|
|
_noise_={} |
|
49
|
|
|
if self.parameters['artifacts_noise_type'] is not None: |
|
50
|
|
|
_noise_ = {'noise_type' : self.parameters['artifacts_noise_type'], |
|
51
|
|
|
'noise_amplitude' : self.parameters['artifacts_noise_amplitude'], |
|
52
|
|
|
'noise_seed' : 0, |
|
53
|
|
|
'verbose' : False} |
|
54
|
|
|
# misalignment dictionary |
|
55
|
|
|
_sinoshifts_={} |
|
56
|
|
|
if self.parameters['artifacts_misalignment_maxamplitude'] is not None: |
|
57
|
|
|
_sinoshifts_ = {'sinoshifts_maxamplitude' : self.parameters['artifacts_misalignment_maxamplitude']} |
|
58
|
|
|
# adding zingers and stripes |
|
59
|
|
|
_zingers_={} |
|
60
|
|
|
if self.parameters['artifacts_zingers_percentage'] is not None: |
|
61
|
|
|
_zingers_ = {'zingers_percentage' : self.parameters['artifacts_zingers_percentage'], |
|
62
|
|
|
'zingers_modulus' : self.parameters['artifacts_zingers_modulus']} |
|
63
|
|
|
_stripes_={} |
|
64
|
|
|
if self.parameters['artifacts_stripes_percentage'] is not None: |
|
65
|
|
|
_stripes_ = {'stripes_percentage' : self.parameters['artifacts_stripes_percentage'], |
|
66
|
|
|
'stripes_maxthickness' : self.parameters['artifacts_stripes_maxthickness'], |
|
67
|
|
|
'stripes_intensity' : self.parameters['artifacts_stripes_intensity'], |
|
68
|
|
|
'stripes_type' : self.parameters['artifacts_stripes_type'], |
|
69
|
|
|
'stripes_variability' : self.parameters['artifacts_stripes_variability']} |
|
70
|
|
|
# partial volume effect dictionary |
|
71
|
|
|
_pve_={} |
|
72
|
|
|
if self.parameters['artifacts_pve'] is not None: |
|
73
|
|
|
_pve_ = {'pve_strength' : self.parameters['artifacts_pve']} |
|
74
|
|
|
# fresnel propagator |
|
75
|
|
|
_fresnel_propagator_={} |
|
76
|
|
|
if self.parameters['artifacts_fresnel_distance'] is not None: |
|
77
|
|
|
_fresnel_propagator_ = {'fresnel_dist_observation' : self.parameters['artifacts_fresnel_distance'], |
|
78
|
|
|
'fresnel_scale_factor' : self.parameters['artifacts_fresnel_scale_factor'], |
|
79
|
|
|
'fresnel_wavelenght' : self.parameters['artifacts_fresnel_wavelenght']} |
|
80
|
|
|
if self.parameters['artifacts_misalignment_maxamplitude'] is not None: |
|
81
|
|
|
[sino_artifacts, shifts] = _Artifacts_(sinogram.copy(), **_noise_, **_zingers_, **_stripes_, **_sinoshifts_, **_pve_, **_fresnel_propagator_) |
|
82
|
|
|
else: |
|
83
|
|
|
sino_artifacts = _Artifacts_(sinogram.copy(), **_noise_, **_zingers_, **_stripes_, **_sinoshifts_, **_pve_, **_fresnel_propagator_) |
|
84
|
|
|
return sino_artifacts |
|
|
|
|
|
|
85
|
|
|
|
|
86
|
|
|
def get_max_frames(self): |
|
87
|
|
|
return 'single' |
|
88
|
|
|
|
|
89
|
|
|
def nInput_datasets(self): |
|
90
|
|
|
return 1 |
|
91
|
|
|
|
|
92
|
|
|
def nOutput_datasets(self): |
|
93
|
|
|
return 1 |
|
94
|
|
|
|