Test Failed
Pull Request — master (#700)
by Daniil
05:20 queued 01:40
created

savu.plugins.reconstructions.projectors.forward_projector_cpu   A

Complexity

Total Complexity 8

Size/Duplication

Total Lines 99
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 56
dl 0
loc 99
rs 10
c 0
b 0
f 0
wmc 8

8 Methods

Rating   Name   Duplication   Size   Complexity  
A ForwardProjectorCpu.get_max_frames() 0 2 1
A ForwardProjectorCpu.new_shape() 0 10 1
A ForwardProjectorCpu.pre_process() 0 6 1
A ForwardProjectorCpu.nInput_datasets() 0 2 1
A ForwardProjectorCpu.nOutput_datasets() 0 2 1
A ForwardProjectorCpu.__init__() 0 2 1
A ForwardProjectorCpu.process_frames() 0 12 1
A ForwardProjectorCpu.setup() 0 15 1
1
# Copyright 2014 Diamond Light Source Ltd.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4
# you may not use this file except in compliance with the License.
5
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9
# Unless required by applicable law or agreed to in writing, software
10
# distributed under the License is distributed on an "AS IS" BASIS,
11
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
"""
16
.. module:: forward_projector_cpu
17
   :platform: Unix
18
   :synopsis: A forward data projector using ToMoBAR software
19
20
.. moduleauthor:: Daniil Kazantsev <[email protected]>
21
"""
22
23
from savu.plugins.plugin import Plugin
24
from savu.plugins.driver.cpu_plugin import CpuPlugin
25
from savu.plugins.utils import register_plugin
26
27
from tomobar.methodsDIR import RecToolsDIR
28
import numpy as np
29
30
@register_plugin
31
class ForwardProjectorCpu(Plugin, CpuPlugin):
32
    """
33
    This plugin uses ToMoBAR software and CPU Astra projector underneath to generate projection data.
34
    The plugin will project the given object using user provided parallel-beam geometry.
35
36
    :param angles_deg: Projection angles in degrees in a format [start, stop, step]. Default: [0.0, 180.0, 0.5].
37
    :param det_horiz: The size of the _horizontal_ detector. Default: 300.
38
    :param out_datasets: Default out dataset names. Default: ['forw_proj']
39
    """
40
41
    def __init__(self):
42
        super(ForwardProjectorCpu, self).__init__('ForwardProjectorCpu')
43
44
    def pre_process(self):
45
        # set parameters
46
        angles_list = self.parameters['angles_deg']
47
        self.angles_rad = np.deg2rad(np.arange(angles_list[0], angles_list[1], angles_list[2], dtype=np.float))
48
        self.angles_total = len(self.angles_rad)
49
        self.detectors_horiz = self.parameters['det_horiz']
50
51
    def setup(self):
52
        in_dataset, out_dataset = self.get_datasets()
53
        in_pData, out_pData = self.get_plugin_datasets()
54
        in_pData[0].plugin_data_setup('VOLUME_XZ', 'single')
55
56
        out_shape_sino = self.new_shape(in_dataset[0].get_shape(), in_dataset[0])
57
        label = ['x.pixels', 'proj.angles', 'y.pixels']
58
        pattern = {'name': 'SINOGRAM', 'slice_dims': (1,),
59
                   'core_dims': (0,2)}
60
        out_dataset[0].create_dataset(axis_labels=label, shape=out_shape_sino)
61
        out_dataset[0].add_pattern(pattern['name'],
62
                                   slice_dims=pattern['slice_dims'],
63
                                   core_dims=pattern['core_dims'])
64
        out_pData[0].plugin_data_setup(pattern['name'], self.get_max_frames())
65
        out_dataset[0].meta_data.set('rotation_angle', self.angles_rad)
66
67
    def process_frames(self, data):
68
        image = data[0].astype(np.float32)
69
        image = np.where(np.isfinite(image), image, 0)
70
        objsize_image = np.shape(image)[0]
71
        RectoolsDIR = RecToolsDIR(DetectorsDimH = self.detectors_horiz,  # DetectorsDimH # detector dimension (horizontal)
72
                            DetectorsDimV = None,  # DetectorsDimV # detector dimension (vertical) for 3D case only
73
                            CenterRotOffset = None, # Center of Rotation (CoR) scalar (for 3D case only)
74
                            AnglesVec = self.angles_rad, # array of angles in radians
75
                            ObjSize = objsize_image, # a scalar to define reconstructed object dimensions
76
                            device_projector='cpu')
77
        sinogram_new = RectoolsDIR.FORWPROJ(image)
78
        return sinogram_new
79
80
    def new_shape(self, full_shape, data):
81
        # calculate a new output data shape based on the input data shape
82
        core_dirs = data.get_core_dimensions()
83
        angles_list = self.parameters['angles_deg']
84
        self.angles_rad = np.deg2rad(np.arange(angles_list[0], angles_list[1], angles_list[2], dtype=np.float))
85
        self.angles_total = len(self.angles_rad)
86
        self.detectors_horiz = self.parameters['det_horiz']
87
        new_shape_sino_orig = list(full_shape)
88
        new_shape_sino= (self.angles_total, new_shape_sino_orig[1], self.detectors_horiz)
89
        return tuple(new_shape_sino)
90
91
    def get_max_frames(self):
92
        return 'single'
93
94
    def nInput_datasets(self):
95
        return 1
96
97
    def nOutput_datasets(self):
98
        return 1
99