1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
""" |
16
|
|
|
.. module:: dials_find_spots |
17
|
|
|
:platform: Unix |
18
|
|
|
:synopsis: A plugin to integrate azimuthally "symmetric" signals i.e. SAXS,\ |
19
|
|
|
WAXS or XRD.Requires a calibration file |
20
|
|
|
|
21
|
|
|
.. moduleauthor:: Aaron D. Parsons <[email protected]> |
22
|
|
|
""" |
23
|
|
|
|
24
|
|
|
import logging |
25
|
|
|
import numpy as np |
26
|
|
|
from savu.plugins.filters.base_filter import BaseFilter |
27
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
28
|
|
|
from savu.plugins.utils import register_plugin |
29
|
|
|
from scipy.ndimage import gaussian_filter |
30
|
|
|
|
31
|
|
|
from dials.array_family import flex |
32
|
|
|
from dials.algorithms.image.threshold import DispersionThreshold |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
#@register_plugin |
36
|
|
|
class DialsFindSpots(BaseFilter, CpuPlugin): |
37
|
|
|
""" |
38
|
|
|
finding the single crystal peaks with dials |
39
|
|
|
:param spotsize: approximate maximum spot size. Default: 45. |
40
|
|
|
|
41
|
|
|
""" |
42
|
|
|
|
43
|
|
|
def __init__(self): |
44
|
|
|
logging.debug("Starting DialsFindSpots") |
45
|
|
|
super(DialsFindSpots, |
46
|
|
|
self).__init__("DialsFindSpots") |
47
|
|
|
|
48
|
|
|
def process_frames(self, data): |
49
|
|
|
data = data[0] |
50
|
|
|
lp = gaussian_filter(data, 100) |
51
|
|
|
hp = data - lp # poormans background subtraction |
52
|
|
|
hp -= np.min(hp) |
53
|
|
|
sh = hp.shape |
54
|
|
|
hp = hp.astype('uint32') |
55
|
|
|
hp = flex.int(hp) |
56
|
|
|
|
57
|
|
|
mask = flex.bool(np.ones_like(hp).astype('bool')) |
58
|
|
|
result1 = flex.bool(np.zeros_like(hp).astype('bool')) |
59
|
|
|
spots = np.zeros_like(hp).astype('bool') |
60
|
|
|
|
61
|
|
|
for i in range(3, self.parameters['spotsize'], 5): |
62
|
|
|
algorithm = DispersionThreshold(sh, (i, i), 1, 1, 0, -1) |
63
|
|
|
#print type(hp), type(mask), type(result1) |
64
|
|
|
thing = algorithm(hp, mask, result1) |
65
|
|
|
spots = spots + result1.as_numpy_array() |
66
|
|
|
return [data, spots*data] |
67
|
|
|
|
68
|
|
|
def setup(self): |
69
|
|
|
in_datasets, out_datasets = self.get_datasets() |
70
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
71
|
|
|
diffractions = in_datasets[0] |
72
|
|
|
powder = out_datasets[0] |
73
|
|
|
single_crystal = out_datasets[1] |
74
|
|
|
powder.create_dataset(diffractions) |
75
|
|
|
single_crystal.create_dataset(diffractions) |
76
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
77
|
|
|
in_pData[0].plugin_data_setup('DIFFRACTION', self.get_max_frames()) |
78
|
|
|
out_pData[0].plugin_data_setup('DIFFRACTION', self.get_max_frames()) |
79
|
|
|
out_pData[1].plugin_data_setup('DIFFRACTION', self.get_max_frames()) |
80
|
|
|
|
81
|
|
|
def get_max_frames(self): |
82
|
|
|
return 'single' |
83
|
|
|
|
84
|
|
|
def nOutput_datasets(self): |
85
|
|
|
return 2 |
86
|
|
|
|