1
|
|
|
import matplotlib.pyplot as plt |
2
|
|
|
import pandas as pd |
3
|
|
|
import h5py as h5 |
4
|
|
|
import numpy as np |
5
|
|
|
|
6
|
|
|
class StatsUtils(object): |
7
|
|
|
|
8
|
|
|
_pattern_dict = {"projection": ["SINOGRAM", "PROJECTION", "TANGENTOGRAM", "4D_SCAN", "SINOMOVIE"], |
9
|
|
|
"reconstruction": ["VOLUME_YZ", "VOLUME_XZ", "VOLUME_XY", "VOLUME_3D"]} |
10
|
|
|
_stats_list = ["max", "min", "mean", "mean_std_dev", "median_std_dev", "RMSD"] |
11
|
|
|
|
12
|
|
|
def generate_figures(self, filepath, savepath): |
13
|
|
|
f = h5.File(filepath, 'r') |
14
|
|
|
stats_dict, index_list = self._get_dicts_for_graphs(f) |
15
|
|
|
f.close() |
16
|
|
|
|
17
|
|
|
self.make_stats_table(stats_dict, index_list, f"{savepath}/stats_table.html") |
18
|
|
|
|
19
|
|
|
if len(stats_dict["projection"]["max"]): |
20
|
|
|
self.make_stats_graphs(stats_dict["projection"], index_list["projection"], "Projection Stats", |
21
|
|
|
f"{savepath}/projection_stats.png") |
22
|
|
|
if len(stats_dict["reconstruction"]["max"]): |
23
|
|
|
self.make_stats_graphs(stats_dict["reconstruction"], index_list["reconstruction"], "Reconstruction Stats", |
24
|
|
|
f"{savepath}/reconstruction_stats.png") |
25
|
|
|
|
26
|
|
|
@staticmethod |
27
|
|
|
def make_stats_table(stats_dict, index_list, savepath): |
28
|
|
|
p_stats = pd.DataFrame(stats_dict["projection"], index_list["projection"]) |
29
|
|
|
r_stats = pd.DataFrame(stats_dict["reconstruction"], index_list["reconstruction"]) |
30
|
|
|
all_stats = pd.concat([p_stats, r_stats], keys=["Projection", "Reconstruction"]) |
31
|
|
|
all_stats.to_html(savepath) # create table of stats for all plugins |
32
|
|
|
|
33
|
|
|
def make_stats_graphs(self, stats_dict, index_list, title, savepath): |
34
|
|
|
stats_df = pd.DataFrame(stats_dict, index_list) |
35
|
|
|
stats_dict, array_plugins = self._remove_arrays(stats_dict, index_list) |
36
|
|
|
|
37
|
|
|
stats_df_new = pd.DataFrame(stats_dict, index_list) |
38
|
|
|
|
39
|
|
|
colours = ["red", "blue", "green", "black", "purple", "brown"] #max, min, mean, mean std dev, median std dev, RMSD |
40
|
|
|
|
41
|
|
|
new_index = [] |
42
|
|
|
legend = "" |
43
|
|
|
for ind in stats_df_new.index: |
44
|
|
|
new_index.append(ind[0]) # change x ticks to only be plugin numbers rather than names (for space) |
45
|
|
|
legend += f"{ind}\n" # This will form a key showing the plugin names corresponding to plugin numbers |
46
|
|
|
stats_df_new.index = new_index |
47
|
|
|
fig, ax = plt.subplots(3, 2, figsize=(11, 9), dpi=320, facecolor="lavender") |
48
|
|
|
i = 0 |
49
|
|
|
for row in ax: |
50
|
|
|
for axis in row: |
51
|
|
|
stat = self._stats_list[i] |
52
|
|
|
axis.plot(stats_df_new[stat], "x-", color=colours[i]) |
53
|
|
|
for plugin in array_plugins: # adding 'error' bars for plugins with multiple values due to parameter changes |
54
|
|
|
my_max = max(stats_df[stat][plugin]) |
55
|
|
|
my_min = min(stats_df[stat][plugin]) |
56
|
|
|
middle = (my_max + my_min) / 2 |
57
|
|
|
my_range = my_max - my_min |
58
|
|
|
axis.errorbar(int(plugin[0]) - int(stats_df_new.index[0]), middle, yerr=[my_range / 2], capsize=5) |
59
|
|
|
if i == 1: |
60
|
|
|
maxx = len(stats_df_new[stat]) * 1.08 - 1 |
61
|
|
|
maxy = max(stats_df_new[stat]) |
62
|
|
|
axis.text(maxx, maxy, legend, ha="left", va="top", |
63
|
|
|
bbox=dict(boxstyle="round", facecolor="red", alpha=0.4)) |
64
|
|
|
stat = stat.replace("_", " ") |
65
|
|
|
axis.set_title(stat) |
66
|
|
|
axis.grid(True) |
67
|
|
|
i += 1 |
68
|
|
|
fig.suptitle(title, fontsize="x-large") |
69
|
|
|
plt.savefig(savepath, bbox_inches="tight") |
70
|
|
|
|
71
|
|
|
@staticmethod |
72
|
|
|
def _get_dicts_for_graphs(file): |
73
|
|
|
stats_dict = {} |
74
|
|
|
stats_dict["projection"] = {"max": [], "min": [], "mean": [], "mean_std_dev": [], "median_std_dev": [], |
75
|
|
|
"RMSD": []} |
76
|
|
|
stats_dict["reconstruction"] = {"max": [], "min": [], "mean": [], "mean_std_dev": [], "median_std_dev": [], |
77
|
|
|
"RMSD": []} |
78
|
|
|
|
79
|
|
|
index_list = {"projection": [], "reconstruction": []} |
80
|
|
|
|
81
|
|
|
group = file["stats"] |
82
|
|
|
for space in ("projection", "reconstruction"): |
83
|
|
|
for index, stat in enumerate(["max", "min", "mean", "mean_std_dev", "median_std_dev", "RMSD"]): |
84
|
|
|
for key in list(group.keys()): |
85
|
|
|
if group[key].attrs.get("pattern") in StatsUtils._pattern_dict[space]: |
86
|
|
|
if f"{key}: {group[key].attrs.get('plugin_name')}" not in index_list[space]: |
87
|
|
|
index_list[space].append(f"{key}: {group[key].attrs.get('plugin_name')}") |
88
|
|
|
if group[key].ndim == 1: |
89
|
|
|
if len(group[key]) > index: |
90
|
|
|
stats_dict[space][stat].append(group[key][index]) |
91
|
|
|
else: |
92
|
|
|
stats_dict[space][stat].append(None) |
93
|
|
|
elif group[key].ndim == 2: |
94
|
|
|
if len(group[key][0]) > index: |
95
|
|
|
stats_dict[space][stat].append(group[key][:, index]) |
96
|
|
|
else: |
97
|
|
|
stats_dict[space][stat].append(None) |
98
|
|
|
return stats_dict, index_list |
99
|
|
|
|
100
|
|
|
|
101
|
|
|
@staticmethod |
102
|
|
|
def _remove_arrays(stats_dict, index_list): |
103
|
|
|
array_plugins = set(()) |
104
|
|
|
for stat in list(stats_dict.keys()): |
105
|
|
|
for index, value in enumerate(stats_dict[stat]): |
106
|
|
|
if isinstance(value, np.ndarray): |
107
|
|
|
stats_dict[stat][index] = stats_dict[stat][index][0] |
108
|
|
|
array_plugins.add(index_list[index]) |
109
|
|
|
return stats_dict, array_plugins |
110
|
|
|
|
111
|
|
|
|
112
|
|
|
|