1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
""" |
15
|
|
|
.. module:: testing_iterative_plugin |
16
|
|
|
:platform: Unix |
17
|
|
|
:synopsis: Iterative plugin example |
18
|
|
|
.. moduleauthor:: Nicola Wadeson <[email protected]> |
19
|
|
|
""" |
20
|
|
|
|
21
|
|
|
import numpy as np |
22
|
|
|
|
23
|
|
|
from savu.plugins.utils import register_plugin |
24
|
|
|
from savu.plugins.filters.base_filter import BaseFilter |
25
|
|
|
from savu.plugins.driver.iterative_plugin import IterativePlugin |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
@register_plugin |
29
|
|
|
class TestingIterativePlugin(BaseFilter, IterativePlugin): |
30
|
|
|
""" |
31
|
|
|
A plugin to test the iterative plugin driver |
32
|
|
|
|
33
|
|
|
:u*param nIterations: Number of iterations. Default: 10. |
34
|
|
|
|
35
|
|
|
""" |
36
|
|
|
|
37
|
|
|
def __init__(self): |
38
|
|
|
super(TestingIterativePlugin, self).__init__("TestingIterativePlugin") |
39
|
|
|
|
40
|
|
|
def pre_process(self): |
41
|
|
|
self.set_iterations(self.parameters['nIterations']) |
42
|
|
|
|
43
|
|
|
def process_frames(self, data): |
44
|
|
|
# A random example function |
45
|
|
|
if self.get_iteration() == 0: |
46
|
|
|
return np.zeros(data[0].shape, dtype=np.float32) |
47
|
|
|
return data[1] + np.ones(data[0].shape, dtype=np.float32)*10 |
48
|
|
|
|
49
|
|
|
def post_process(self): |
50
|
|
|
# option here to break out of the iterations |
51
|
|
|
#self.set_processing_complete() |
52
|
|
|
pass |
53
|
|
|
|
54
|
|
View Code Duplication |
def setup(self): |
|
|
|
|
55
|
|
|
# set up the output dataset that is created by the plugin |
56
|
|
|
in_dataset, out_dataset = self.get_datasets() |
57
|
|
|
|
58
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
59
|
|
|
in_pData[0].plugin_data_setup('SINOGRAM', 'single') |
60
|
|
|
|
61
|
|
|
# Cloned datasets are at the end of the out_dataset list |
62
|
|
|
out_dataset[0].create_dataset(in_dataset[0]) |
63
|
|
|
|
64
|
|
|
# What is a cloned dataset? |
65
|
|
|
# Since each dataset in Savu has its own backing hdf5 file, a dataset |
66
|
|
|
# cannot be used for input and output at the same time. So, in the |
67
|
|
|
# case of iterative plugins, if a dataset is used as output and then |
68
|
|
|
# as input on the next iteration, the subsequent output must be a |
69
|
|
|
# different file. |
70
|
|
|
# A cloned dataset is a copy of another dataset but with a different |
71
|
|
|
# backing file. It doesn't have a name, is not accessible as a dataset |
72
|
|
|
# in the framework and is only used in alternation with another |
73
|
|
|
# dataset to allow it to be used as both input and output |
74
|
|
|
# simultaneously. |
75
|
|
|
|
76
|
|
|
# This is a cloned dataset (of out_dataset[0]) |
77
|
|
|
self.create_clone(out_dataset[1], out_dataset[0]) |
78
|
|
|
|
79
|
|
|
out_pData[0].plugin_data_setup('SINOGRAM', 'single') |
80
|
|
|
out_pData[1].plugin_data_setup('SINOGRAM', 'single') |
81
|
|
|
|
82
|
|
|
# input and output datasets for the first iteration |
83
|
|
|
self.set_iteration_datasets(0, [in_dataset[0]], [out_dataset[0]]) |
84
|
|
|
# input and output datasets for subsequent iterations |
85
|
|
|
self.set_iteration_datasets(1, [in_dataset[0], out_dataset[0]], |
86
|
|
|
[out_dataset[1]]) |
87
|
|
|
# out_dataset[0] and out_dataset[1] will continue to alternate for |
88
|
|
|
# all remaining iterations i.e. output becomes input and input becomes |
89
|
|
|
# output. |
90
|
|
|
|
91
|
|
|
# total number of output datasets |
92
|
|
|
def nOutput_datasets(self): |
93
|
|
|
return 2 |
94
|
|
|
|
95
|
|
|
# total number of output datasets that are clones |
96
|
|
|
def nClone_datasets(self): |
97
|
|
|
return 1 |
98
|
|
|
|