1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
""" |
16
|
|
|
.. module:: base_recon |
17
|
|
|
:platform: Unix |
18
|
|
|
:synopsis: A base class for all reconstruction methods |
19
|
|
|
|
20
|
|
|
.. moduleauthor:: Mark Basham <[email protected]> |
21
|
|
|
|
22
|
|
|
""" |
23
|
|
|
import math |
24
|
|
|
import copy |
25
|
|
|
import numpy as np |
26
|
|
|
np.seterr(divide='ignore', invalid='ignore') |
27
|
|
|
|
28
|
|
|
import savu.core.utils as cu |
29
|
|
|
from savu.plugins.plugin import Plugin |
30
|
|
|
|
31
|
|
|
MAX_OUTER_PAD = 2.1 |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class BaseRecon(Plugin): |
35
|
|
|
""" |
36
|
|
|
A base class for reconstruction plugins |
37
|
|
|
|
38
|
|
|
:u*param centre_of_rotation: Centre of rotation to use for the \ |
39
|
|
|
reconstruction. Default: 0.0. |
40
|
|
|
|
41
|
|
|
:u*param init_vol: Dataset to use as volume initialiser \ |
42
|
|
|
(doesn't currently work with preview). Default: None. |
43
|
|
|
|
44
|
|
|
:param centre_pad: Pad the sinogram to centre it in order to fill the \ |
45
|
|
|
reconstructed volume ROI for asthetic purposes.\ |
46
|
|
|
NB: Only available for selected algorithms and will be ignored otherwise. \ |
47
|
|
|
WARNING: This will significantly increase the size of the data and the \ |
48
|
|
|
time to compute the reconstruction). Default: False. |
49
|
|
|
|
50
|
|
|
:param outer_pad: Pad the sinogram width to fill the reconstructed volume \ |
51
|
|
|
for asthetic purposes.\ |
52
|
|
|
Choose from True (defaults to sqrt(2)), False or float <= 2.1. \ |
53
|
|
|
NB: Only available for selected algorithms and will be ignored otherwise.\ |
54
|
|
|
WARNING: This will increase the size of the data and the \ |
55
|
|
|
time to compute the reconstruction). Default: False. |
56
|
|
|
|
57
|
|
|
:u*param log: Take the log of the data before reconstruction \ |
58
|
|
|
(True or False). Default: True. |
59
|
|
|
|
60
|
|
|
:u*param preview: A slice list of required frames. Default: []. |
61
|
|
|
|
62
|
|
|
:param force_zero: Set any values in the reconstructed image outside of \ |
63
|
|
|
this range to zero. Default: [None, None]. |
64
|
|
|
|
65
|
|
|
:param ratio: Ratio between the diameter of a circle mask and the width of\ |
66
|
|
|
a reconstructed image. If passed as a list or tuple, the second value is \ |
67
|
|
|
assigned to the outer mask area, e.g [0.95, 0.0]. Default: 0.95. |
68
|
|
|
|
69
|
|
|
:param log_func: Override the default log \ |
70
|
|
|
function. Default: 'np.nan_to_num(-np.log(sino))'. |
71
|
|
|
|
72
|
|
|
:param vol_shape: Override the size of the reconstruction volume with an \ |
73
|
|
|
integer value. Default: 'fixed'. |
74
|
|
|
""" |
75
|
|
|
|
76
|
|
|
def __init__(self, name='BaseRecon'): |
77
|
|
|
super(BaseRecon, self).__init__(name) |
78
|
|
|
self.nOut = 1 |
79
|
|
|
self.nIn = 1 |
80
|
|
|
self.scan_dim = None |
81
|
|
|
self.rep_dim = None |
82
|
|
|
self.br_vol_shape = None |
83
|
|
|
self.frame_angles = None |
84
|
|
|
self.frame_cors = None |
85
|
|
|
self.frame_init_data = None |
86
|
|
|
self.centre = None |
87
|
|
|
self.base_pad_amount = None |
88
|
|
|
self.padding_alg = False |
89
|
|
|
self.cor_shift = 0 |
90
|
|
|
self.init_vol = False |
91
|
|
|
self.cor_as_dataset = False |
92
|
|
|
|
93
|
|
|
def base_pre_process(self): |
94
|
|
|
in_data, out_data = self.get_datasets() |
95
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
96
|
|
|
self.pad_dim = \ |
97
|
|
|
in_pData[0].get_data_dimension_by_axis_label('x', contains=True) |
98
|
|
|
in_meta_data = self.get_in_meta_data()[0] |
99
|
|
|
self.__set_padding_alg() |
100
|
|
|
|
101
|
|
|
self.exp.log(self.name + " End") |
102
|
|
|
self.br_vol_shape = out_pData[0].get_shape() |
103
|
|
|
self.set_centre_of_rotation(in_data[0], out_data[0], in_meta_data) |
104
|
|
|
|
105
|
|
|
self.main_dir = in_data[0].get_data_patterns()['SINOGRAM']['main_dir'] |
106
|
|
|
self.angles = in_meta_data.get('rotation_angle') |
107
|
|
|
if len(self.angles.shape) != 1: |
108
|
|
|
self.scan_dim = in_data[0].get_data_dimension_by_axis_label('scan') |
109
|
|
|
self.slice_dirs = out_data[0].get_slice_dimensions() |
110
|
|
|
|
111
|
|
|
shape = in_pData[0].get_shape() |
112
|
|
|
factor = self.__get_outer_pad() |
113
|
|
|
self.sino_pad = int(math.ceil(factor * shape[self.pad_dim])) |
114
|
|
|
|
115
|
|
|
self.sino_func, self.cor_func = self.set_function(shape) if \ |
116
|
|
|
self.padding_alg else self.set_function(False) |
117
|
|
|
|
118
|
|
|
self.range = self.parameters['force_zero'] |
119
|
|
|
self.fix_sino = self.get_sino_centre_method() |
120
|
|
|
|
121
|
|
|
def __get_outer_pad(self): |
122
|
|
|
# length of diagonal of square is side*sqrt(2) |
123
|
|
|
factor = math.sqrt(2) - 1 |
124
|
|
|
pad = self.parameters['outer_pad'] if 'outer_pad' in \ |
125
|
|
|
list(self.parameters.keys()) else False |
126
|
|
|
|
127
|
|
|
if pad is not False and not self.padding_alg: |
128
|
|
|
msg = 'This reconstruction algorithm cannot be padded.' |
129
|
|
|
cu.user_message(msg) |
130
|
|
|
return 0 |
131
|
|
|
|
132
|
|
|
if isinstance(pad, bool): |
133
|
|
|
return factor if pad is True else 0 |
134
|
|
|
factor = float(pad) |
135
|
|
|
if factor > MAX_OUTER_PAD: |
136
|
|
|
factor = MAX_OUTER_PAD |
137
|
|
|
msg = 'Maximum outer_pad value is 2.1, using this instead' |
138
|
|
|
cu.user_message(msg) |
139
|
|
|
return float(pad) |
140
|
|
|
|
141
|
|
|
def __set_padding_alg(self): |
142
|
|
|
""" Determine if this is an algorithm that allows sinogram padding. """ |
143
|
|
|
pad_algs = self.get_padding_algorithms() |
144
|
|
|
alg = self.parameters['algorithm'] if 'algorithm' in \ |
145
|
|
|
list(self.parameters.keys()) else None |
146
|
|
|
self.padding_alg = True if alg in pad_algs else False |
147
|
|
|
|
148
|
|
|
def get_vol_shape(self): |
149
|
|
|
return self.br_vol_shape |
150
|
|
|
|
151
|
|
|
def set_centre_of_rotation(self, inData, outData, mData): |
152
|
|
|
# if cor has been passed as a dataset then do nothing |
153
|
|
|
if isinstance(self.parameters['centre_of_rotation'], str): |
154
|
|
|
return |
155
|
|
|
if 'centre_of_rotation' in list(mData.get_dictionary().keys()): |
156
|
|
|
cor = self.__set_cor_from_meta_data(mData, inData) |
157
|
|
|
else: |
158
|
|
|
val = self.parameters['centre_of_rotation'] |
159
|
|
|
if isinstance(val, dict): |
160
|
|
|
cor = self.__polyfit_cor(val, inData) |
161
|
|
|
else: |
162
|
|
|
sdirs = inData.get_slice_dimensions() |
163
|
|
|
cor = np.ones(np.prod([inData.get_shape()[i] for i in sdirs])) |
164
|
|
|
# if centre of rotation has not been set then fix it in the |
165
|
|
|
# centre |
166
|
|
|
val = val if val != 0 else \ |
167
|
|
|
(self.get_vol_shape()[self._get_detX_dim()]) / 2.0 |
168
|
|
|
cor *= val |
169
|
|
|
# mData.set('centre_of_rotation', cor) see Github ticket |
170
|
|
|
self.cor = cor |
171
|
|
|
outData.meta_data.set("centre_of_rotation", copy.deepcopy(self.cor)) |
172
|
|
|
self.centre = self.cor[0] |
173
|
|
|
|
174
|
|
|
def populate_metadata_to_output(self, inData, outData, mData): |
175
|
|
|
# writing rotation angles into the metadata associated with the output (reconstruction) |
176
|
|
|
self.angles = mData.get('rotation_angle') |
177
|
|
|
outData.meta_data.set("rotation_angle", copy.deepcopy(self.angles)) |
178
|
|
|
if 'detector_x' in list(mData.get_dictionary().keys()): |
179
|
|
|
detector_x_dim = mData.get('detector_x') |
180
|
|
|
else: |
181
|
|
|
xDim = inData.get_data_dimension_by_axis_label('detector_x') |
182
|
|
|
detector_x_dim = inData.get_shape()[xDim] |
183
|
|
|
outData.meta_data.set("detector_x", copy.deepcopy(detector_x_dim)) |
184
|
|
|
|
185
|
|
|
def __set_cor_from_meta_data(self, mData, inData): |
186
|
|
|
cor = mData.get('centre_of_rotation') |
187
|
|
|
sdirs = inData.get_slice_dimensions() |
188
|
|
|
total_frames = np.prod([inData.get_shape()[i] for i in sdirs]) |
189
|
|
|
if total_frames > len(cor): |
190
|
|
|
cor = np.tile(cor, total_frames // len(cor)) |
191
|
|
|
return cor |
192
|
|
|
|
193
|
|
|
def __polyfit_cor(self, cor_dict, inData): |
194
|
|
|
if 'detector_y' in list(inData.meta_data.get_dictionary().keys()): |
195
|
|
|
y = inData.meta_data.get('detector_y') |
196
|
|
|
else: |
197
|
|
|
yDim = inData.get_data_dimension_by_axis_label('detector_y') |
198
|
|
|
y = np.arange(inData.get_shape()[yDim]) |
199
|
|
|
|
200
|
|
|
z = np.polyfit(list(map(int, list(cor_dict.keys()))), list(cor_dict.values()), 1) |
201
|
|
|
p = np.poly1d(z) |
202
|
|
|
cor = p(y) |
203
|
|
|
return cor |
204
|
|
|
|
205
|
|
|
def set_function(self, pad_shape): |
206
|
|
|
if not pad_shape: |
207
|
|
|
def cor_func(cor): return cor |
208
|
|
|
if self.parameters['log']: |
209
|
|
|
sino_func = self.__make_lambda() |
210
|
|
|
else: |
211
|
|
|
sino_func = self.__make_lambda(log=False) |
212
|
|
|
else: |
213
|
|
|
def cor_func(cor): return cor + self.sino_pad |
214
|
|
|
if self.parameters['log']: |
215
|
|
|
sino_func = self.__make_lambda(pad=pad_shape) |
216
|
|
|
else: |
217
|
|
|
sino_func = self.__make_lambda(pad=pad_shape, log=False) |
218
|
|
|
return sino_func, cor_func |
219
|
|
|
|
220
|
|
|
def __make_lambda(self, log=True, pad=False): |
221
|
|
|
log_func = 'np.nan_to_num(sino)' if not log else self.parameters['log_func'] |
222
|
|
|
if pad: |
223
|
|
|
pad_tuples, mode = self.__get_pad_values(pad) |
224
|
|
|
log_func = log_func.replace( |
225
|
|
|
'sino', 'np.pad(sino, %s, "%s")' % (pad_tuples, mode)) |
226
|
|
|
return eval("lambda sino: " + log_func) |
227
|
|
|
|
228
|
|
|
def __get_pad_values(self, pad_shape): |
229
|
|
|
mode = 'edge' |
230
|
|
|
pad_tuples = [(0, 0)] * (len(pad_shape) - 1) |
231
|
|
|
pad_tuples.insert(self.pad_dim, (self.sino_pad, self.sino_pad)) |
232
|
|
|
pad_tuples = tuple(pad_tuples) |
233
|
|
|
return pad_tuples, mode |
234
|
|
|
|
235
|
|
|
def base_process_frames_before(self, data): |
236
|
|
|
""" |
237
|
|
|
Reconstruct a single sinogram with the provided centre of rotation |
238
|
|
|
""" |
239
|
|
|
sl = self.get_current_slice_list()[0] |
240
|
|
|
init = data[1] if self.init_vol else None |
241
|
|
|
angles = \ |
242
|
|
|
self.angles[:, sl[self.scan_dim]] if self.scan_dim else self.angles |
243
|
|
|
|
244
|
|
|
self.frame_angles = angles |
245
|
|
|
|
246
|
|
|
dim_sl = sl[self.main_dir] |
247
|
|
|
|
248
|
|
|
if self.cor_as_dataset: |
249
|
|
|
self.frame_cors = self.cor_func(data[len(data) - 1]) |
250
|
|
|
else: |
251
|
|
|
frame_nos = \ |
252
|
|
|
self.get_plugin_in_datasets()[0].get_current_frame_idx() |
253
|
|
|
a = self.cor[tuple([frame_nos])] |
254
|
|
|
self.frame_cors = self.cor_func(a) |
255
|
|
|
|
256
|
|
|
# for extra padded frames that make up the numbers |
257
|
|
|
if not self.frame_cors.shape: |
258
|
|
|
self.frame_cors = np.array([self.centre]) |
259
|
|
|
|
260
|
|
|
len_data = len(np.arange(dim_sl.start, dim_sl.stop, dim_sl.step)) |
261
|
|
|
|
262
|
|
|
missing = [self.centre] * (len(self.frame_cors) - len_data) |
263
|
|
|
self.frame_cors = np.append(self.frame_cors, missing) |
264
|
|
|
|
265
|
|
|
# fix to remove NaNs in the initialised image |
266
|
|
|
if init is not None: |
267
|
|
|
init[np.isnan(init)] == 0.0 |
268
|
|
|
self.frame_init_data = init |
269
|
|
|
|
270
|
|
|
data[0] = self.fix_sino(self.sino_func(data[0]), self.frame_cors[0]) |
271
|
|
|
return data |
272
|
|
|
|
273
|
|
|
def base_process_frames_after(self, data): |
274
|
|
|
lower_range, upper_range = self.range |
275
|
|
|
if lower_range is not None: |
276
|
|
|
data[data < lower_range] = 0 |
277
|
|
|
if upper_range is not None: |
278
|
|
|
data[data > upper_range] = 0 |
279
|
|
|
return data |
280
|
|
|
|
281
|
|
|
def get_padding_algorithms(self): |
282
|
|
|
""" A list of algorithms that allow the data to be padded. """ |
283
|
|
|
return [] |
284
|
|
|
|
285
|
|
|
def pad_sino(self, sino, cor): |
286
|
|
|
""" Pad the sinogram so the centre of rotation is at the centre. """ |
287
|
|
|
detX = self._get_detX_dim() |
288
|
|
|
pad = self.get_centre_offset(sino, cor, detX) |
289
|
|
|
self.cor_shift = pad[0] |
290
|
|
|
pad_tuples = [(0, 0)] * (len(sino.shape) - 1) |
291
|
|
|
pad_tuples.insert(detX, tuple(pad)) |
292
|
|
|
self.__set_pad_amount(max(pad)) |
293
|
|
|
return np.pad(sino, tuple(pad_tuples), mode='edge') |
294
|
|
|
|
295
|
|
|
def _get_detX_dim(self): |
296
|
|
|
pData = self.get_plugin_in_datasets()[0] |
297
|
|
|
return pData.get_data_dimension_by_axis_label('x', contains=True) |
298
|
|
|
|
299
|
|
|
def get_centre_offset(self, sino, cor, detX): |
300
|
|
|
centre_pad = self.br_array_pad(cor, sino.shape[detX]) |
301
|
|
|
sino_width = sino.shape[detX] |
302
|
|
|
new_width = sino_width + max(centre_pad) |
303
|
|
|
sino_pad = int(math.ceil(float(sino_width) / new_width * self.sino_pad) // 2) |
304
|
|
|
pad = np.array([sino_pad]*2) + centre_pad |
305
|
|
|
return pad |
306
|
|
|
|
307
|
|
|
def get_centre_shift(self, sino, cor): |
308
|
|
|
detX = self._get_detX_dim() |
309
|
|
|
return max(self.get_centre_offset(sino, self.centre, detX)) |
310
|
|
|
|
311
|
|
|
def crop_sino(self, sino, cor): |
312
|
|
|
""" Crop the sinogram so the centre of rotation is at the centre. """ |
313
|
|
|
detX = self._get_detX_dim() |
314
|
|
|
start, stop = self.br_array_pad(cor, sino.shape[detX])[::-1] |
315
|
|
|
self.cor_shift = -start |
316
|
|
|
sl = [slice(None)] * len(sino.shape) |
317
|
|
|
sl[detX] = slice(start, sino.shape[detX] - stop) |
318
|
|
|
sino = sino[tuple(sl)] |
319
|
|
|
self.set_mask(sino.shape) |
320
|
|
|
return sino |
321
|
|
|
|
322
|
|
|
def br_array_pad(self, ctr, nPixels): |
323
|
|
|
width = nPixels - 1.0 |
324
|
|
|
alen = ctr |
325
|
|
|
blen = width - ctr |
326
|
|
|
mid = (width - 1.0) / 2.0 |
327
|
|
|
shift = round(abs(blen - alen)) |
328
|
|
|
p_low = 0 if (ctr > mid) else shift |
329
|
|
|
p_high = shift + 0 if (ctr > mid) else 0 |
330
|
|
|
return np.array([int(p_low), int(p_high)]) |
331
|
|
|
|
332
|
|
|
def keep_sino(self, sino, cor): |
333
|
|
|
""" No change to the sinogram """ |
334
|
|
|
return sino |
335
|
|
|
|
336
|
|
|
def get_sino_centre_method(self): |
337
|
|
|
centre_pad = self.keep_sino |
338
|
|
|
if 'centre_pad' in list(self.parameters.keys()): |
339
|
|
|
cpad = self.parameters['centre_pad'] |
340
|
|
|
if not (cpad is True or cpad is False): |
341
|
|
|
raise Exception('Unknown value for "centre_pad", please choose' |
342
|
|
|
' True or False.') |
343
|
|
|
centre_pad = self.pad_sino if cpad and self.padding_alg \ |
344
|
|
|
else self.crop_sino |
345
|
|
|
return centre_pad |
346
|
|
|
|
347
|
|
|
def __set_pad_amount(self, pad_amount): |
348
|
|
|
self.base_pad_amount = pad_amount |
349
|
|
|
|
350
|
|
|
def get_pad_amount(self): |
351
|
|
|
return self.base_pad_amount |
352
|
|
|
|
353
|
|
|
def get_fov_fraction(self, sino, cor): |
354
|
|
|
""" Get the fraction of the original FOV that can be reconstructed due\ |
355
|
|
|
to offset centre """ |
356
|
|
|
pData = self.get_plugin_in_datasets()[0] |
357
|
|
|
detX = pData.get_data_dimension_by_axis_label('x', contains=True) |
358
|
|
|
original_length = sino.shape[detX] |
359
|
|
|
shift = self.get_centre_shift(sino, cor) |
360
|
|
|
return (original_length - shift) / float(original_length) |
361
|
|
|
|
362
|
|
|
def get_reconstruction_alg(self): |
363
|
|
|
return None |
364
|
|
|
|
365
|
|
|
def get_angles(self): |
366
|
|
|
""" Get the angles associated with the current sinogram(s). |
367
|
|
|
|
368
|
|
|
:returns: Angles of the current frames. |
369
|
|
|
:rtype: np.ndarray |
370
|
|
|
""" |
371
|
|
|
return self.frame_angles |
372
|
|
|
|
373
|
|
|
def get_cors(self): |
374
|
|
|
""" |
375
|
|
|
Get the centre of rotations associated with the current sinogram(s). |
376
|
|
|
|
377
|
|
|
:returns: Centre of rotation values for the current frames. |
378
|
|
|
:rtype: np.ndarray |
379
|
|
|
""" |
380
|
|
|
return self.frame_cors + self.cor_shift |
381
|
|
|
|
382
|
|
|
def set_mask(self, shape): |
383
|
|
|
pass |
384
|
|
|
|
385
|
|
|
def get_initial_data(self): |
386
|
|
|
""" |
387
|
|
|
Get the initial data (if it is exists) associated with the current \ |
388
|
|
|
sinogram(s). |
389
|
|
|
|
390
|
|
|
:returns: The section of the initialisation data associated with the \ |
391
|
|
|
current frames. |
392
|
|
|
:rtype: np.ndarray or None |
393
|
|
|
""" |
394
|
|
|
return self.frame_init_data |
395
|
|
|
|
396
|
|
|
def get_frame_params(self): |
397
|
|
|
params = [self.get_cors(), self.get_angles(), self.get_vol_shape(), |
398
|
|
|
self.get_initial_data()] |
399
|
|
|
return params |
400
|
|
|
|
401
|
|
|
def setup(self): |
402
|
|
|
in_dataset, out_dataset = self.get_datasets() |
403
|
|
|
# reduce the data as per data_subset parameter |
404
|
|
|
self.preview_flag = \ |
405
|
|
|
self.set_preview(in_dataset[0], self.parameters['preview']) |
406
|
|
|
|
407
|
|
|
self._set_volume_dimensions(in_dataset[0]) |
408
|
|
|
axis_labels = self._get_axis_labels(in_dataset[0]) |
409
|
|
|
shape = self._get_shape(in_dataset[0]) |
410
|
|
|
|
411
|
|
|
# output dataset |
412
|
|
|
out_dataset[0].create_dataset(axis_labels=axis_labels, shape=shape) |
413
|
|
|
out_dataset[0].add_volume_patterns(*self._get_volume_dimensions()) |
414
|
|
|
|
415
|
|
|
# set information relating to the plugin data |
416
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
417
|
|
|
|
418
|
|
|
self.init_vol = 1 if 'init_vol' in list(self.parameters.keys()) and\ |
419
|
|
|
self.parameters['init_vol'] else 0 |
420
|
|
|
self.cor_as_dataset = 1 if isinstance( |
421
|
|
|
self.parameters['centre_of_rotation'], str) else 0 |
422
|
|
|
|
423
|
|
|
for i in range(len(in_dataset) - self.init_vol - self.cor_as_dataset): |
424
|
|
|
in_pData[i].plugin_data_setup('SINOGRAM', self.get_max_frames(), |
425
|
|
|
slice_axis=self.get_slice_axis()) |
426
|
|
|
idx = 1 |
427
|
|
|
|
428
|
|
|
# initial volume dataset |
429
|
|
|
if self.init_vol: |
430
|
|
|
# from savu.data.data_structures.data_types import Replicate |
431
|
|
|
# if self.rep_dim: |
432
|
|
|
# in_dataset[idx].data = Replicate( |
433
|
|
|
# in_dataset[idx], in_dataset[0].get_shape(self.rep_dim)) |
434
|
|
|
in_pData[1].plugin_data_setup('VOLUME_XZ', self.get_max_frames()) |
435
|
|
|
idx += 1 |
|
|
|
|
436
|
|
|
|
437
|
|
|
# cor dataset |
438
|
|
|
if self.cor_as_dataset: |
439
|
|
|
self.cor_as_dataset = True |
440
|
|
|
in_pData[idx].plugin_data_setup('METADATA', self.get_max_frames()) |
441
|
|
|
|
442
|
|
|
# set pattern_name and nframes to process for all datasets |
443
|
|
|
out_pData[0].plugin_data_setup('VOLUME_XZ', self.get_max_frames()) |
444
|
|
|
# metadata output populator |
445
|
|
|
in_meta_data = self.get_in_meta_data()[0] |
446
|
|
|
self.populate_metadata_to_output(in_dataset[0], out_dataset[0], in_meta_data) |
447
|
|
|
|
448
|
|
|
def _get_axis_labels(self, in_dataset): |
449
|
|
|
""" |
450
|
|
|
Get the new axis labels for the output dataset - this is now a volume. |
451
|
|
|
|
452
|
|
|
Parameters |
453
|
|
|
---------- |
454
|
|
|
in_dataset : :class:`savu.data.data_structures.data.Data` |
455
|
|
|
The input dataset to the plugin. |
456
|
|
|
|
457
|
|
|
Returns |
458
|
|
|
------- |
459
|
|
|
labels : dict |
460
|
|
|
The axis labels for the dataset that is output from the plugin. |
461
|
|
|
|
462
|
|
|
""" |
463
|
|
|
labels = in_dataset.data_info.get('axis_labels')[0] |
464
|
|
|
volX, volY, volZ = self._get_volume_dimensions() |
465
|
|
|
labels = [str(volX) + '.voxel_x.voxels', str(volZ) + '.voxel_z.voxels'] |
466
|
|
|
if volY: |
467
|
|
|
labels.append(str(volY) + '.voxel_y.voxels') |
468
|
|
|
labels = {in_dataset: labels} |
469
|
|
|
return labels |
470
|
|
|
|
471
|
|
|
def _set_volume_dimensions(self, data): |
472
|
|
|
""" |
473
|
|
|
Map the input dimensions to the output volume dimensions |
474
|
|
|
|
475
|
|
|
Parameters |
476
|
|
|
---------- |
477
|
|
|
in_dataset : :class:`savu.data.data_structures.data.Data` |
478
|
|
|
The input dataset to the plugin. |
479
|
|
|
""" |
480
|
|
|
data._finalise_patterns() |
481
|
|
|
self.volX = data.get_data_dimension_by_axis_label("rotation_angle") |
482
|
|
|
self.volZ = data.get_data_dimension_by_axis_label("x", contains=True) |
483
|
|
|
self.volY = data.get_data_dimension_by_axis_label( |
484
|
|
|
"y", contains=True, exists=True) |
485
|
|
|
|
486
|
|
|
def _get_volume_dimensions(self): |
487
|
|
|
return self.volX, self.volY, self.volZ |
488
|
|
|
|
489
|
|
|
def _get_shape(self, in_dataset): |
490
|
|
|
shape = list(in_dataset.get_shape()) |
491
|
|
|
volX, volY, volZ = self._get_volume_dimensions() |
492
|
|
|
|
493
|
|
|
if self.parameters['vol_shape'] in ('auto', 'fixed'): |
494
|
|
|
shape[volX] = shape[volZ] |
495
|
|
|
else: |
496
|
|
|
shape[volX] = self.parameters['vol_shape'] |
497
|
|
|
shape[volZ] = self.parameters['vol_shape'] |
498
|
|
|
|
499
|
|
|
if 'resolution' in self.parameters.keys(): |
500
|
|
|
shape[volX] /= self.parameters['resolution'] |
501
|
|
|
shape[volZ] /= self.parameters['resolution'] |
502
|
|
|
return tuple(shape) |
503
|
|
|
|
504
|
|
|
def get_max_frames(self): |
505
|
|
|
""" |
506
|
|
|
Number of data frames to pass to each instance of process_frames func |
507
|
|
|
|
508
|
|
|
Returns |
509
|
|
|
------- |
510
|
|
|
str or int |
511
|
|
|
"single", "multiple" or integer (only to be used if the number of |
512
|
|
|
frames MUST be fixed.) |
513
|
|
|
""" |
514
|
|
|
return 'multiple' |
515
|
|
|
|
516
|
|
|
def get_slice_axis(self): |
517
|
|
|
""" |
518
|
|
|
Fix the fastest changing slice dimension |
519
|
|
|
|
520
|
|
|
Returns |
521
|
|
|
------- |
522
|
|
|
str or None |
523
|
|
|
str should be the axis_label corresponding to the fastest changing |
524
|
|
|
dimension |
525
|
|
|
|
526
|
|
|
""" |
527
|
|
|
return None |
528
|
|
|
|
529
|
|
|
def nInput_datasets(self): |
530
|
|
|
nIn = 1 |
531
|
|
|
if 'init_vol' in self.parameters.keys() and \ |
532
|
|
|
self.parameters['init_vol']: |
533
|
|
|
if len(self.parameters['init_vol'].split('.')) == 3: |
534
|
|
|
name, temp, self.rep_dim = self.parameters['init_vol'] |
535
|
|
|
self.parameters['init_vol'] = name |
536
|
|
|
nIn += 1 |
537
|
|
|
self.parameters['in_datasets'].append(self.parameters['init_vol']) |
538
|
|
|
if isinstance(self.parameters['centre_of_rotation'], str): |
539
|
|
|
self.parameters['in_datasets'].append( |
540
|
|
|
self.parameters['centre_of_rotation']) |
541
|
|
|
nIn += 1 |
542
|
|
|
return nIn |
543
|
|
|
|
544
|
|
|
def nOutput_datasets(self): |
545
|
|
|
return self.nOut |
546
|
|
|
|
547
|
|
|
def reconstruct_pre_process(self): |
548
|
|
|
""" |
549
|
|
|
Should be overridden to perform pre-processing in a child class |
550
|
|
|
""" |
551
|
|
|
pass |
552
|
|
|
|
553
|
|
|
def executive_summary(self): |
554
|
|
|
summary = [] |
555
|
|
|
if not self.preview_flag: |
556
|
|
|
summary.append(("WARNING: Ignoring preview parameters as a preview" |
557
|
|
|
" has already been applied to the data.")) |
558
|
|
|
if len(summary) > 0: |
559
|
|
|
return summary |
560
|
|
|
return ["Nothing to Report"] |
561
|
|
|
|