1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
""" |
16
|
|
|
.. module:: forward_projector_gpu |
17
|
|
|
:platform: Unix |
18
|
|
|
:synopsis: A forward data projector using ToMoBAR software |
19
|
|
|
|
20
|
|
|
.. moduleauthor:: Daniil Kazantsev <[email protected]> |
21
|
|
|
""" |
22
|
|
|
|
23
|
|
|
from savu.plugins.plugin import Plugin |
24
|
|
|
from savu.plugins.driver.gpu_plugin import GpuPlugin |
25
|
|
|
from savu.plugins.utils import register_plugin |
26
|
|
|
|
27
|
|
|
from tomobar.methodsDIR import RecToolsDIR |
28
|
|
|
import numpy as np |
29
|
|
|
|
30
|
|
View Code Duplication |
@register_plugin |
|
|
|
|
31
|
|
|
class ForwardProjectorGpu(Plugin, GpuPlugin): |
32
|
|
|
""" |
33
|
|
|
This plugin uses ToMoBAR software and GPU Astra projector to generate parallel-beam projection data. |
34
|
|
|
The plugin will project the given object using the available metadata OR user-provided geometry. |
35
|
|
|
In case when angles set to None, the metadata projection geometry will be used. |
36
|
|
|
|
37
|
|
|
:param angles_deg: Projection angles in degrees in a format [start, stop, step]. Default: None. |
38
|
|
|
:param det_horiz: The size of the horizontal detector. Default: None. |
39
|
|
|
:param centre_of_rotation: The centre of rotation. Default: None. |
40
|
|
|
:param out_datasets: Default out dataset name. Default: ['forw_proj'] |
41
|
|
|
""" |
42
|
|
|
|
43
|
|
|
def __init__(self): |
44
|
|
|
super(ForwardProjectorGpu, self).__init__('ForwardProjectorGpu') |
45
|
|
|
|
46
|
|
|
def pre_process(self): |
47
|
|
|
#getting metadata |
48
|
|
|
in_meta_data = self.get_in_meta_data()[0] |
49
|
|
|
self.cor = in_meta_data.get('centre_of_rotation') |
50
|
|
|
self.cor=self.cor[0] |
51
|
|
|
|
52
|
|
|
def setup(self): |
53
|
|
|
in_dataset, out_dataset = self.get_datasets() |
54
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
55
|
|
|
in_pData[0].plugin_data_setup('VOLUME_XZ', 'single') |
56
|
|
|
|
57
|
|
|
if (self.parameters['angles_deg'] is None): |
58
|
|
|
# data extracted geometry parameters |
59
|
|
|
in_meta_data=self.get_in_meta_data()[0] |
60
|
|
|
angles_meta_deg = in_meta_data.get('rotation_angle') |
61
|
|
|
self.angles_rad = np.deg2rad(angles_meta_deg) |
62
|
|
|
self.detectors_horiz = in_meta_data.get('detector_x_length') |
63
|
|
|
else: |
64
|
|
|
# user-set parameters |
65
|
|
|
angles_list=self.parameters['angles_deg'] |
66
|
|
|
self.cor=self.parameters['centre_of_rotation'] |
67
|
|
|
self.angles_rad = np.deg2rad(np.linspace(angles_list[0], angles_list[1], angles_list[2], dtype=np.float)) |
68
|
|
|
self.detectors_horiz = self.parameters['det_horiz'] |
69
|
|
|
|
70
|
|
|
self.det_horiz_half=0.5*self.detectors_horiz |
71
|
|
|
self.angles_total = len(self.angles_rad) |
72
|
|
|
|
73
|
|
|
out_shape_sino = self.new_shape(in_dataset[0].get_shape(), in_dataset[0]) |
74
|
|
|
labels = ['rotation_angle.degrees', 'detector_y.pixel', 'detector_x.pixel'] |
75
|
|
|
pattern = {'name': 'SINOGRAM', 'slice_dims': (1,), |
76
|
|
|
'core_dims': (2,0)} |
77
|
|
|
out_dataset[0].create_dataset(axis_labels=labels, shape=out_shape_sino) |
78
|
|
|
out_dataset[0].add_pattern(pattern['name'], |
79
|
|
|
slice_dims=pattern['slice_dims'], |
80
|
|
|
core_dims=pattern['core_dims']) |
81
|
|
|
pattern2 = {'name': 'PROJECTION', 'slice_dims': (0,), |
82
|
|
|
'core_dims': (1,2)} |
83
|
|
|
out_dataset[0].add_pattern(pattern2['name'], |
84
|
|
|
slice_dims=pattern['slice_dims'], |
85
|
|
|
core_dims=pattern['core_dims']) |
86
|
|
|
out_pData[0].plugin_data_setup(pattern['name'], self.get_max_frames()) |
87
|
|
|
out_dataset[0].meta_data.set('rotation_angle', angles_meta_deg) |
|
|
|
|
88
|
|
|
|
89
|
|
|
def process_frames(self, data): |
90
|
|
|
image = data[0].astype(np.float32) |
91
|
|
|
image = np.where(np.isfinite(image), image, 0) |
92
|
|
|
objsize_image = np.shape(image)[0] |
93
|
|
|
RectoolsDIR = RecToolsDIR(DetectorsDimH = self.detectors_horiz, # DetectorsDimH # detector dimension (horizontal) |
94
|
|
|
DetectorsDimV = None, # DetectorsDimV # detector dimension (vertical) for 3D case only |
95
|
|
|
CenterRotOffset = -self.cor+self.det_horiz_half-0.5, # Center of Rotation (CoR) scalar |
96
|
|
|
AnglesVec = self.angles_rad, # array of angles in radians |
97
|
|
|
ObjSize = objsize_image, # a scalar to define reconstructed object dimensions |
98
|
|
|
device_projector='gpu') |
99
|
|
|
sinogram_new = RectoolsDIR.FORWPROJ(image) |
100
|
|
|
return sinogram_new |
101
|
|
|
|
102
|
|
|
def new_shape(self, full_shape, data): |
103
|
|
|
# calculate a new output data shape based on the input data shape |
104
|
|
|
new_shape_sino_orig = list(full_shape) |
105
|
|
|
new_shape_sino= (self.angles_total, new_shape_sino_orig[1], self.detectors_horiz) |
106
|
|
|
return tuple(new_shape_sino) |
107
|
|
|
|
108
|
|
|
def get_max_frames(self): |
109
|
|
|
return 'single' |
110
|
|
|
|
111
|
|
|
def nInput_datasets(self): |
112
|
|
|
return 1 |
113
|
|
|
|
114
|
|
|
def nOutput_datasets(self): |
115
|
|
|
return 1 |
116
|
|
|
|