1
|
|
|
""" |
2
|
|
|
.. module:: statistics |
3
|
|
|
:platform: Unix |
4
|
|
|
:synopsis: Contains and processes statistics information for each plugin. |
5
|
|
|
|
6
|
|
|
.. moduleauthor::Jacob Williamson <[email protected]> |
7
|
|
|
|
8
|
|
|
""" |
9
|
|
|
|
10
|
|
|
from savu.plugins.savers.utils.hdf5_utils import Hdf5Utils |
11
|
|
|
from savu.plugins.stats.stats_utils import StatsUtils |
12
|
|
|
from savu.core.iterate_plugin_group_utils import check_if_in_iterative_loop |
13
|
|
|
|
14
|
|
|
import h5py as h5 |
15
|
|
|
import numpy as np |
16
|
|
|
import os |
17
|
|
|
from mpi4py import MPI |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
class Statistics(object): |
21
|
|
|
_pattern_list = ["SINOGRAM", "PROJECTION", "TANGENTOGRAM", "VOLUME_YZ", "VOLUME_XZ", "VOLUME_XY", "VOLUME_3D", "4D_SCAN", "SINOMOVIE"] |
22
|
|
|
_no_stats_plugins = ["BasicOperations", "Mipmap"] |
23
|
|
|
_key_list = ["max", "min", "mean", "mean_std_dev", "median_std_dev", "NRMSD"] |
24
|
|
|
#_savers = ["Hdf5Saver", "ImageSaver", "MrcSaver", "TiffSaver", "XrfSaver"] |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def __init__(self): |
28
|
|
|
self.calc_stats = True |
29
|
|
|
self.stats = {'max': [], 'min': [], 'mean': [], 'std_dev': [], 'RSS': [], 'data_points': []} |
30
|
|
|
self.stats_before_processing = {'max': [], 'min': [], 'mean': [], 'std_dev': []} |
31
|
|
|
self.residuals = {'max': [], 'min': [], 'mean': [], 'std_dev': []} |
32
|
|
|
self._repeat_count = 0 |
33
|
|
|
self.p_num = None |
34
|
|
|
|
35
|
|
|
def setup(self, plugin_self, pattern=None): |
36
|
|
|
self.plugin_name = plugin_self.name |
37
|
|
|
if plugin_self.name in Statistics._no_stats_plugins: |
38
|
|
|
self.calc_stats = False |
39
|
|
|
if self.calc_stats: |
40
|
|
|
self.plugin = plugin_self |
41
|
|
|
self._pad_dims = [] |
42
|
|
|
self._already_called = False |
43
|
|
|
if pattern: |
44
|
|
|
self.pattern = pattern |
45
|
|
|
else: |
46
|
|
|
self._set_pattern_info() |
47
|
|
|
if self.calc_stats: |
48
|
|
|
Statistics._any_stats = True |
49
|
|
|
self._setup_iterative() |
50
|
|
|
|
51
|
|
|
def _setup_iterative(self): |
52
|
|
|
self._iterative_group = check_if_in_iterative_loop(Statistics.exp) |
53
|
|
|
if self._iterative_group: |
54
|
|
|
if self._iterative_group.start_index == Statistics.count: |
55
|
|
|
Statistics._loop_counter += 1 |
56
|
|
|
Statistics.loop_stats.append({"NRMSD": np.array([])}) |
57
|
|
|
self.l_num = Statistics._loop_counter - 1 |
58
|
|
|
|
59
|
|
|
@classmethod |
60
|
|
|
def _setup_class(cls, exp): |
61
|
|
|
"""Sets up the statistics class for the whole plugin chain (only called once)""" |
62
|
|
|
try: |
63
|
|
|
if exp.meta_data.get("stats") == "on": |
64
|
|
|
cls._stats_flag = True |
65
|
|
|
elif exp.meta_data.get("stats") == "off": |
66
|
|
|
cls._stats_flag = False |
67
|
|
|
except KeyError: |
68
|
|
|
cls._stats_flag = True |
69
|
|
|
print(cls._stats_flag) |
70
|
|
|
cls._any_stats = False |
71
|
|
|
cls.count = 2 |
72
|
|
|
cls.global_stats = {} |
73
|
|
|
cls.loop_stats = [] |
74
|
|
|
cls.exp = exp |
75
|
|
|
cls.n_plugins = len(exp.meta_data.plugin_list.plugin_list) |
76
|
|
|
for i in range(1, cls.n_plugins + 1): |
77
|
|
|
cls.global_stats[i] = np.array([]) |
78
|
|
|
cls.global_residuals = {} |
79
|
|
|
cls.plugin_numbers = {} |
80
|
|
|
cls.plugin_names = {} |
81
|
|
|
cls._loop_counter = 0 |
82
|
|
|
cls.path = exp.meta_data['out_path'] |
83
|
|
|
if cls.path[-1] == '/': |
84
|
|
|
cls.path = cls.path[0:-1] |
85
|
|
|
cls.path = f"{cls.path}/stats" |
86
|
|
|
if MPI.COMM_WORLD.rank == 0: |
87
|
|
|
if not os.path.exists(cls.path): |
88
|
|
|
os.mkdir(cls.path) |
89
|
|
|
|
90
|
|
|
def get_stats(self, p_num=None, stat=None, instance=-1): |
91
|
|
|
"""Returns stats associated with a certain plugin, given the plugin number (its place in the process list). |
92
|
|
|
|
93
|
|
|
:param p_num: Plugin number of the plugin whose associated stats are being fetched. |
94
|
|
|
If p_num <= 0, it is relative to the plugin number of the current plugin being run. |
95
|
|
|
E.g current plugin number = 5, p_num = -2 --> will return stats of the third plugin. |
96
|
|
|
By default will gather stats for the current plugin. |
97
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
98
|
|
|
If left blank will return the whole dictionary of stats: |
99
|
|
|
{'max': , 'min': , 'mean': , 'mean_std_dev': , 'median_std_dev': , 'NRMSD' } |
100
|
|
|
:param instance: In cases where there are multiple set of stats associated with a plugin |
101
|
|
|
due to loops or multi-parameters, specify which set you want to retrieve, i.e 3 to retrieve the |
102
|
|
|
stats associated with the third run of a plugin. Pass 'all' to get a list of all sets. |
103
|
|
|
By default will retrieve the most recent set. |
104
|
|
|
""" |
105
|
|
|
if not p_num: |
106
|
|
|
p_num = self.p_num |
107
|
|
|
if p_num <= 0: |
108
|
|
|
try: |
109
|
|
|
p_num = self.p_num + p_num |
110
|
|
|
except TypeError: |
111
|
|
|
p_num = Statistics.count + p_num |
112
|
|
|
if Statistics.global_stats[p_num].ndim == 1 and instance in (None, 0, 1, -1, "all"): |
113
|
|
|
stats_array = Statistics.global_stats[p_num] |
114
|
|
|
else: |
115
|
|
|
if instance == "all": |
116
|
|
|
stats_list = [self.get_stats(p_num, stat=stat, instance=1)] |
117
|
|
|
n = 2 |
118
|
|
|
if Statistics.global_stats[p_num].ndim != 1: |
119
|
|
|
while n <= len(Statistics.global_stats[p_num]): |
120
|
|
|
stats_list.append(self.get_stats(p_num, stat=stat, instance=n)) |
121
|
|
|
n += 1 |
122
|
|
|
return stats_list |
123
|
|
|
if instance > 0: |
124
|
|
|
instance -= 1 |
125
|
|
|
stats_array = Statistics.global_stats[p_num][instance] |
126
|
|
|
stats_dict = self._array_to_dict(stats_array) |
127
|
|
|
if stat is not None: |
128
|
|
|
return stats_dict[stat] |
129
|
|
|
else: |
130
|
|
|
return stats_dict |
131
|
|
|
|
132
|
|
|
def get_stats_from_name(self, plugin_name, n=None, stat=None, instance=-1): |
133
|
|
|
"""Returns stats associated with a certain plugin. |
134
|
|
|
|
135
|
|
|
:param plugin_name: name of the plugin whose associated stats are being fetched. |
136
|
|
|
:param n: In a case where there are multiple instances of **plugin_name** in the process list, |
137
|
|
|
specify the nth instance. Not specifying will select the first (or only) instance. |
138
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
139
|
|
|
If left blank will return the whole dictionary of stats: |
140
|
|
|
{'max': , 'min': , 'mean': , 'mean_std_dev': , 'median_std_dev': , 'NRMSD' } |
141
|
|
|
:param instance: In cases where there are multiple set of stats associated with a plugin |
142
|
|
|
due to iterative loops or multi-parameters, specify which set you want to retrieve, i.e 3 to retrieve the |
143
|
|
|
stats associated with the third run of a plugin. Pass 'all' to get a list of all sets. |
144
|
|
|
By default will retrieve the most recent set. |
145
|
|
|
""" |
146
|
|
|
name = plugin_name |
147
|
|
|
if n in (None, 0, 1): |
148
|
|
|
name = name + str(n) |
149
|
|
|
p_num = Statistics.plugin_numbers[name] |
150
|
|
|
return self.get_stats(p_num, stat, instance) |
151
|
|
|
|
152
|
|
|
def get_stats_from_dataset(self, dataset, stat=None, instance=-1): |
153
|
|
|
"""Returns stats associated with a dataset. |
154
|
|
|
|
155
|
|
|
:param dataset: The dataset whose associated stats are being fetched. |
156
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
157
|
|
|
If left blank will return the whole dictionary of stats: |
158
|
|
|
{'max': , 'min': , 'mean': , 'mean_std_dev': , 'median_std_dev': , 'NRMSD'} |
159
|
|
|
:param instance: In cases where there are multiple set of stats associated with a dataset |
160
|
|
|
due to iterative loops or multi-parameters, specify which set you want to retrieve, i.e 3 to retrieve the |
161
|
|
|
stats associated with the third run of a plugin. Pass 'all' to get a list of all sets. |
162
|
|
|
|
163
|
|
|
""" |
164
|
|
|
stats_list = [dataset.meta_data.get("stats")] |
165
|
|
|
n = 2 |
166
|
|
|
while ("stats" + str(n)) in list(dataset.meta_data.get_dictionary().keys()): |
167
|
|
|
stats_list.append(dataset.meta_data.get("stats" + str(n))) |
168
|
|
|
n += 1 |
169
|
|
|
if stat: |
170
|
|
|
for i in range(len(stats_list)): |
171
|
|
|
stats_list[i] = stats_list[i][stat] |
172
|
|
|
if instance in (None, 0, 1): |
173
|
|
|
stats = stats_list[0] |
174
|
|
|
elif instance == "all": |
175
|
|
|
stats = stats_list |
176
|
|
|
else: |
177
|
|
|
if instance >= 2: |
178
|
|
|
instance -= 1 |
179
|
|
|
stats = stats_list[instance] |
180
|
|
|
return stats |
181
|
|
|
|
182
|
|
|
def set_slice_stats(self, my_slice, base_slice=None, pad=True): |
183
|
|
|
slice_stats_after = self.calc_slice_stats(my_slice, base_slice=None, pad=pad) |
184
|
|
|
if base_slice: |
185
|
|
|
slice_stats_before = self.calc_slice_stats(base_slice, pad=pad) |
186
|
|
|
for key in list(self.stats_before_processing.keys()): |
187
|
|
|
self.stats_before_processing[key].append(slice_stats_before[key]) |
188
|
|
|
for key in list(self.stats.keys()): |
189
|
|
|
self.stats[key].append(slice_stats_after[key]) |
190
|
|
|
|
191
|
|
|
def calc_slice_stats(self, my_slice, base_slice=None, pad=True): |
192
|
|
|
"""Calculates and returns slice stats for the current slice. |
193
|
|
|
|
194
|
|
|
:param my_slice: The slice whose stats are being calculated. |
195
|
|
|
:param base_slice: Provide a base slice to calculate residuals from, to calculate RMSD. |
196
|
|
|
""" |
197
|
|
|
if my_slice is not None: |
198
|
|
|
my_slice = self._de_list(my_slice) |
199
|
|
|
if pad: |
200
|
|
|
my_slice = self._unpad_slice(my_slice) |
201
|
|
|
slice_stats = {'max': np.amax(my_slice).astype('float64'), 'min': np.amin(my_slice).astype('float64'), |
202
|
|
|
'mean': np.mean(my_slice), 'std_dev': np.std(my_slice), 'data_points': my_slice.size} |
203
|
|
|
if base_slice is not None: |
204
|
|
|
base_slice = self._de_list(base_slice) |
205
|
|
|
base_slice = self._unpad_slice(base_slice) |
206
|
|
|
rss = self.calc_rss(my_slice, base_slice) |
207
|
|
|
else: |
208
|
|
|
rss = None |
209
|
|
|
slice_stats['RSS'] = rss |
210
|
|
|
return slice_stats |
211
|
|
|
return None |
212
|
|
|
|
213
|
|
|
def calc_rss(self, array1, array2): # residual sum of squares |
214
|
|
|
if array1.shape == array2.shape: |
215
|
|
|
residuals = np.subtract(array1, array2) |
216
|
|
|
rss = 0 |
217
|
|
|
for value in (np.nditer(residuals)): |
218
|
|
|
rss += value**2 |
219
|
|
|
# rss = sum(value**2 for value in np.nditer(residuals)) |
220
|
|
|
else: |
221
|
|
|
#print("Warning: cannot calculate RSS, arrays different sizes.") |
222
|
|
|
rss = None |
223
|
|
|
return rss |
224
|
|
|
|
225
|
|
|
def rmsd_from_rss(self, rss, n): |
226
|
|
|
return np.sqrt(rss/n) |
227
|
|
|
|
228
|
|
|
def calc_rmsd(self, array1, array2): |
229
|
|
|
if array1.shape == array2.shape: |
230
|
|
|
rss = self.calc_rss(array1, array2) |
231
|
|
|
rmsd = self.rmsd_from_rss(rss, array1.size) |
232
|
|
|
else: |
233
|
|
|
print("Warning: cannot calculate RMSD, arrays different sizes.") # need to make this an actual warning |
234
|
|
|
rmsd = None |
235
|
|
|
return rmsd |
236
|
|
|
|
237
|
|
|
def calc_stats_residuals(self, stats_before, stats_after): |
238
|
|
|
residuals = {'max': None, 'min': None, 'mean': None, 'std_dev': None} |
239
|
|
|
for key in list(residuals.keys()): |
240
|
|
|
residuals[key] = stats_after[key] - stats_before[key] |
241
|
|
|
return residuals |
242
|
|
|
|
243
|
|
|
def set_stats_residuals(self, residuals): |
244
|
|
|
self.residuals['max'].append(residuals['max']) |
245
|
|
|
self.residuals['min'].append(residuals['min']) |
246
|
|
|
self.residuals['mean'].append(residuals['mean']) |
247
|
|
|
self.residuals['std_dev'].append(residuals['std_dev']) |
248
|
|
|
|
249
|
|
|
def calc_volume_stats(self, slice_stats): |
250
|
|
|
volume_stats = np.array([max(slice_stats['max']), min(slice_stats['min']), np.mean(slice_stats['mean']), |
251
|
|
|
np.mean(slice_stats['std_dev']), np.median(slice_stats['std_dev'])]) |
252
|
|
|
if None not in slice_stats['RSS']: |
253
|
|
|
total_rss = sum(slice_stats['RSS']) |
254
|
|
|
n = sum(slice_stats['data_points']) |
255
|
|
|
RMSD = self.rmsd_from_rss(total_rss, n) |
256
|
|
|
the_range = volume_stats[0] - volume_stats[1] |
257
|
|
|
NRMSD = RMSD / the_range # normalised RMSD (dividing by the range) |
258
|
|
|
volume_stats = np.append(volume_stats, NRMSD) |
259
|
|
|
else: |
260
|
|
|
#volume_stats = np.append(volume_stats, None) |
261
|
|
|
pass |
262
|
|
|
return volume_stats |
263
|
|
|
|
264
|
|
|
def _set_loop_stats(self): |
265
|
|
|
# NEED TO CHANGE THIS - MUST USE SLICES |
266
|
|
|
data_obj1 = list(self._iterative_group._ip_data_dict["iterating"].keys())[0] |
267
|
|
|
data_obj2 = self._iterative_group._ip_data_dict["iterating"][data_obj1] |
268
|
|
|
RMSD = self.calc_rmsd(data_obj1.data, data_obj2.data) |
269
|
|
|
the_range = self.get_stats(self.p_num, stat="max", instance=self._iterative_group._ip_iteration) -\ |
270
|
|
|
self.get_stats(self.p_num, stat="min", instance=self._iterative_group._ip_iteration) |
271
|
|
|
NRMSD = RMSD/the_range |
272
|
|
|
Statistics.loop_stats[self.l_num]["NRMSD"] = np.append(Statistics.loop_stats[self.l_num]["NRMSD"], NRMSD) |
273
|
|
|
|
274
|
|
|
def set_volume_stats(self): |
275
|
|
|
"""Calculates volume-wide statistics from slice stats, and updates class-wide arrays with these values. |
276
|
|
|
Links volume stats with the output dataset and writes slice stats to file. |
277
|
|
|
""" |
278
|
|
|
stats = self.stats |
279
|
|
|
combined_stats = self._combine_mpi_stats(stats) |
280
|
|
|
if not self.p_num: |
281
|
|
|
self.p_num = Statistics.count |
282
|
|
|
p_num = self.p_num |
283
|
|
|
name = self.plugin_name |
284
|
|
|
i = 2 |
285
|
|
|
if not self._iterative_group: |
286
|
|
|
while name in list(Statistics.plugin_numbers.keys()): |
287
|
|
|
name = self.plugin_name + str(i) |
288
|
|
|
i += 1 |
289
|
|
|
elif self._iterative_group._ip_iteration == 0: |
290
|
|
|
while name in list(Statistics.plugin_numbers.keys()): |
291
|
|
|
name = self.plugin_name + str(i) |
292
|
|
|
i += 1 |
293
|
|
|
|
294
|
|
|
if p_num not in list(Statistics.plugin_names.keys()): |
295
|
|
|
Statistics.plugin_names[p_num] = name |
296
|
|
|
Statistics.plugin_numbers[name] = p_num |
297
|
|
|
if len(self.stats['max']) != 0: |
298
|
|
|
stats_array = self.calc_volume_stats(combined_stats) |
299
|
|
|
Statistics.global_residuals[p_num] = {} |
300
|
|
|
#before_processing = self.calc_volume_stats(self.stats_before_processing) |
301
|
|
|
#for key in list(before_processing.keys()): |
302
|
|
|
# Statistics.global_residuals[p_num][key] = Statistics.global_stats[p_num][key] - before_processing[key] |
303
|
|
|
|
304
|
|
|
if len(Statistics.global_stats[p_num]) == 0: |
305
|
|
|
Statistics.global_stats[p_num] = stats_array |
306
|
|
|
else: |
307
|
|
|
Statistics.global_stats[p_num] = np.vstack([Statistics.global_stats[p_num], stats_array]) |
308
|
|
|
|
309
|
|
|
stats_dict = self._array_to_dict(stats_array) |
310
|
|
|
self._link_stats_to_datasets(stats_dict, self._iterative_group) |
311
|
|
|
|
312
|
|
|
if self._iterative_group: |
313
|
|
|
if self._iterative_group.end_index == p_num and self._iterative_group._ip_iteration != 0: |
314
|
|
|
#self._set_loop_stats() |
315
|
|
|
pass |
316
|
|
|
|
317
|
|
|
self._write_stats_to_file(p_num) |
318
|
|
|
self._already_called = True |
319
|
|
|
self._repeat_count += 1 |
320
|
|
|
if self._iterative_group: |
321
|
|
|
self.stats = {'max': [], 'min': [], 'mean': [], 'std_dev': [], 'RSS': [], 'data_points': []} |
322
|
|
|
|
323
|
|
|
|
324
|
|
|
|
325
|
|
|
def _combine_mpi_stats(self, slice_stats): |
326
|
|
|
comm = MPI.COMM_WORLD |
327
|
|
|
combined_stats_list = comm.allgather(slice_stats) |
328
|
|
|
combined_stats = {'max': [], 'min': [], 'mean': [], 'std_dev': [], 'RSS': [], 'data_points': []} |
329
|
|
|
for single_stats in combined_stats_list: |
330
|
|
|
for key in list(single_stats.keys()): |
331
|
|
|
combined_stats[key] += single_stats[key] |
332
|
|
|
return combined_stats |
333
|
|
|
|
334
|
|
|
def _array_to_dict(self, stats_array): |
335
|
|
|
stats_dict = {} |
336
|
|
|
for i, value in enumerate(stats_array): |
337
|
|
|
stats_dict[Statistics._key_list[i]] = value |
338
|
|
|
return stats_dict |
339
|
|
|
|
340
|
|
|
def _set_pattern_info(self): |
341
|
|
|
"""Gathers information about the pattern of the data in the current plugin.""" |
342
|
|
|
out_datasets = self.plugin.get_out_datasets() |
343
|
|
|
try: |
344
|
|
|
self.pattern = self.plugin.parameters['pattern'] |
345
|
|
|
if self.pattern == None: |
346
|
|
|
raise KeyError |
347
|
|
|
except KeyError: |
348
|
|
|
if not out_datasets: |
349
|
|
|
self.pattern = None |
350
|
|
|
else: |
351
|
|
|
patterns = out_datasets[0].get_data_patterns() |
352
|
|
|
for pattern in patterns: |
353
|
|
|
if 1 in patterns.get(pattern)["slice_dims"]: |
354
|
|
|
self.pattern = pattern |
355
|
|
|
break |
356
|
|
|
self.calc_stats = False |
357
|
|
|
for dataset in out_datasets: |
358
|
|
|
if bool(set(Statistics._pattern_list) & set(dataset.data_info.get("data_patterns"))): |
359
|
|
|
self.calc_stats = True |
360
|
|
|
|
361
|
|
|
def _link_stats_to_datasets(self, stats_dict, iterative=False): |
362
|
|
|
"""Links the volume wide statistics to the output dataset(s)""" |
363
|
|
|
out_dataset = self.plugin.get_out_datasets()[0] |
364
|
|
|
my_dataset = out_dataset |
365
|
|
|
if iterative: |
366
|
|
|
if "itr_clone" in out_dataset.group_name: |
367
|
|
|
my_dataset = list(iterative._ip_data_dict["iterating"].keys())[0] |
368
|
|
|
n_datasets = self.plugin.nOutput_datasets() |
369
|
|
|
|
370
|
|
|
i = 2 |
371
|
|
|
group_name = "stats" |
372
|
|
|
#out_dataset.data_info.set([group_name], stats) |
373
|
|
|
while group_name in list(my_dataset.meta_data.get_dictionary().keys()): |
374
|
|
|
group_name = f"stats{i}" |
375
|
|
|
i += 1 |
376
|
|
|
for key in list(stats_dict.keys()): |
377
|
|
|
my_dataset.meta_data.set([group_name, key], stats_dict[key]) |
378
|
|
|
|
379
|
|
|
def _delete_stats_metadata(self, plugin): |
380
|
|
|
out_dataset = plugin.get_out_datasets()[0] |
381
|
|
|
out_dataset.meta_data.delete("stats") |
382
|
|
|
|
383
|
|
|
def _write_stats_to_file(self, p_num=None, plugin_name=None): |
384
|
|
|
if p_num is None: |
385
|
|
|
p_num = self.p_num |
386
|
|
|
if plugin_name is None: |
387
|
|
|
plugin_name = self.plugin_names[p_num] |
388
|
|
|
path = Statistics.path |
389
|
|
|
filename = f"{path}/stats.h5" |
390
|
|
|
stats = self.global_stats[p_num] |
391
|
|
|
self.hdf5 = Hdf5Utils(self.exp) |
392
|
|
|
with h5.File(filename, "a", driver="mpio", comm=MPI.COMM_WORLD) as h5file: |
393
|
|
|
group = h5file.require_group("stats") |
394
|
|
|
if stats.shape != (0,): |
395
|
|
|
if str(p_num) in list(group.keys()): |
396
|
|
|
del group[str(p_num)] |
397
|
|
|
dataset = group.create_dataset(str(p_num), shape=stats.shape, dtype=stats.dtype) |
398
|
|
|
dataset[::] = stats[::] |
399
|
|
|
dataset.attrs.create("plugin_name", plugin_name) |
400
|
|
|
dataset.attrs.create("pattern", self.pattern) |
401
|
|
|
if self._iterative_group: |
402
|
|
|
l_stats = Statistics.loop_stats[self.l_num] |
403
|
|
|
group1 = h5file.require_group("iterative") |
404
|
|
|
if self._iterative_group._ip_iteration == self._iterative_group._ip_fixed_iterations - 1\ |
405
|
|
|
and self.p_num == self._iterative_group.end_index: |
406
|
|
|
dataset1 = group1.create_dataset(str(self.l_num), shape=l_stats["NRMSD"].shape, dtype=l_stats["NRMSD"].dtype) |
407
|
|
|
dataset1[::] = l_stats["NRMSD"][::] |
408
|
|
|
loop_plugins = [] |
409
|
|
|
for i in range(self._iterative_group.start_index, self._iterative_group.end_index + 1): |
410
|
|
|
loop_plugins.append(self.plugin_names[i]) |
411
|
|
|
dataset1.attrs.create("loop_plugins", loop_plugins) |
412
|
|
|
dataset.attrs.create("n_loop_plugins", len(loop_plugins)) |
|
|
|
|
413
|
|
|
|
414
|
|
|
def write_slice_stats_to_file(self, slice_stats=None, p_num=None): |
415
|
|
|
"""Writes slice statistics to a h5 file. Placed in the stats folder in the output directory.""" |
416
|
|
|
if not slice_stats: |
417
|
|
|
slice_stats = self.stats |
418
|
|
|
if not p_num: |
419
|
|
|
p_num = self.count |
420
|
|
|
plugin_name = self.plugin_name |
421
|
|
|
else: |
422
|
|
|
plugin_name = self.plugin_names[p_num] |
423
|
|
|
combined_stats = self._combine_mpi_stats(slice_stats) |
424
|
|
|
slice_stats_arrays = {} |
425
|
|
|
datasets = {} |
426
|
|
|
path = Statistics.path |
427
|
|
|
filename = f"{path}/stats_p{p_num}_{plugin_name}.h5" |
428
|
|
|
self.hdf5 = Hdf5Utils(self.plugin.exp) |
429
|
|
|
with h5.File(filename, "a", driver="mpio", comm=MPI.COMM_WORLD) as h5file: |
430
|
|
|
i = 2 |
431
|
|
|
group_name = "/stats" |
432
|
|
|
while group_name in h5file: |
433
|
|
|
group_name = f"/stats{i}" |
434
|
|
|
i += 1 |
435
|
|
|
group = h5file.create_group(group_name, track_order=None) |
436
|
|
|
for key in list(combined_stats.keys()): |
437
|
|
|
slice_stats_arrays[key] = np.array(combined_stats[key]) |
438
|
|
|
datasets[key] = self.hdf5.create_dataset_nofill(group, key, (len(slice_stats_arrays[key]),), slice_stats_arrays[key].dtype) |
439
|
|
|
datasets[key][::] = slice_stats_arrays[key] |
440
|
|
|
|
441
|
|
|
def _unpad_slice(self, slice1): |
442
|
|
|
"""If data is padded in the slice dimension, removes this pad.""" |
443
|
|
|
out_datasets = self.plugin.get_out_datasets() |
444
|
|
|
if len(out_datasets) == 1: |
445
|
|
|
out_dataset = out_datasets[0] |
446
|
|
|
else: |
447
|
|
|
for dataset in out_datasets: |
448
|
|
|
if self.pattern in list(dataset.data_info.get(["data_patterns"]).keys()): |
449
|
|
|
out_dataset = dataset |
450
|
|
|
break |
451
|
|
|
slice_dims = out_dataset.get_slice_dimensions() |
|
|
|
|
452
|
|
|
if self.plugin.pcount == 0: |
453
|
|
|
self._slice_list, self._pad = self._get_unpadded_slice_list(slice1, slice_dims) |
454
|
|
|
if self._pad: |
455
|
|
|
#for slice_dim in slice_dims: |
456
|
|
|
slice_dim = slice_dims[0] |
457
|
|
|
temp_slice = np.swapaxes(slice1, 0, slice_dim) |
458
|
|
|
temp_slice = temp_slice[self._slice_list[slice_dim]] |
459
|
|
|
slice1 = np.swapaxes(temp_slice, 0, slice_dim) |
460
|
|
|
return slice1 |
461
|
|
|
|
462
|
|
|
def _get_unpadded_slice_list(self, slice1, slice_dims): |
463
|
|
|
"""Creates slice object(s) to un-pad slices in the slice dimension(s).""" |
464
|
|
|
slice_list = list(self.plugin.slice_list[0]) |
465
|
|
|
pad = False |
466
|
|
|
if len(slice_list) == len(slice1.shape): |
467
|
|
|
#for i in slice_dims: |
468
|
|
|
i = slice_dims[0] |
469
|
|
|
slice_width = self.plugin.slice_list[0][i].stop - self.plugin.slice_list[0][i].start |
470
|
|
|
if slice_width != slice1.shape[i]: |
471
|
|
|
pad = True |
472
|
|
|
pad_width = (slice1.shape[i] - slice_width) // 2 # Assuming symmetrical padding |
473
|
|
|
slice_list[i] = slice(pad_width, pad_width + 1, 1) |
474
|
|
|
return tuple(slice_list), pad |
475
|
|
|
else: |
476
|
|
|
return self.plugin.slice_list[0], pad |
477
|
|
|
|
478
|
|
|
def _de_list(self, slice1): |
479
|
|
|
"""If the slice is in a list, remove it from that list.""" |
480
|
|
|
if type(slice1) == list: |
481
|
|
|
if len(slice1) != 0: |
482
|
|
|
slice1 = slice1[0] |
483
|
|
|
slice1 = self._de_list(slice1) |
484
|
|
|
return slice1 |
485
|
|
|
|
486
|
|
|
|
487
|
|
|
@classmethod |
488
|
|
|
def _count(cls): |
489
|
|
|
cls.count += 1 |
490
|
|
|
|
491
|
|
|
@classmethod |
492
|
|
|
def _post_chain(cls): |
493
|
|
|
if cls._any_stats & cls._stats_flag: |
494
|
|
|
stats_utils = StatsUtils() |
495
|
|
|
stats_utils.generate_figures(f"{cls.path}/stats.h5", cls.path) |
496
|
|
|
|