|
1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
|
2
|
|
|
# |
|
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
4
|
|
|
# you may not use this file except in compliance with the License. |
|
5
|
|
|
# You may obtain a copy of the License at |
|
6
|
|
|
# |
|
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
8
|
|
|
# |
|
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
12
|
|
|
# See the License for the specific language governing permissions and |
|
13
|
|
|
# limitations under the License. |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
.. module:: A wrapper for TomoPhantom software |
|
17
|
|
|
:platform: Unix |
|
18
|
|
|
:synopsis: TomoPhantom package provides an access to simulated phantom libraries and projection data 2D/3D |
|
19
|
|
|
|
|
20
|
|
|
.. moduleauthor:: Daniil Kazantsev <[email protected]> |
|
21
|
|
|
""" |
|
22
|
|
|
|
|
23
|
|
|
import savu.plugins.utils as pu |
|
24
|
|
|
from savu.plugins.plugin import Plugin |
|
25
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
|
26
|
|
|
from savu.plugins.utils import register_plugin |
|
27
|
|
|
|
|
28
|
|
|
import tomophantom |
|
29
|
|
|
from tomophantom import TomoP2D, TomoP3D |
|
30
|
|
|
from tomophantom.supp.artifacts import _Artifacts_ |
|
31
|
|
|
import os |
|
32
|
|
|
from savu.data.plugin_list import CitationInformation |
|
33
|
|
|
import numpy as np |
|
34
|
|
|
|
|
35
|
|
|
@register_plugin |
|
36
|
|
|
class TomoPhantom(Plugin, CpuPlugin): |
|
37
|
|
|
""" |
|
38
|
|
|
A plugin for TomoPhantom software which generates synthetic phantoms and \ |
|
39
|
|
|
projection data (2D from Phantom2DLibrary.dat and 3D from Phantom3DLibrary.dat) |
|
40
|
|
|
|
|
41
|
|
|
:param geom_model: Select a model (integer) from the library (see TomoPhantom files). Default: 1. |
|
42
|
|
|
:param geom_model_size: Set the size of the phantom. Default: 256. |
|
43
|
|
|
:param geom_projections_total: The total number of projections. Default: 360. |
|
44
|
|
|
:param geom_detectors_horiz: The size of _horizontal_ detectors. Default: 300. |
|
45
|
|
|
:param artifacts_noise_type: Set the noise type, Poisson or Gaussian. Default: 'Poisson'. |
|
46
|
|
|
:param artifacts_noise_sigma: Define noise amplitude. Default: 5000. |
|
47
|
|
|
:param artifacts_misalignment_maxamplitude: Incorporate misalignment into projections (in pixels). Default: None. |
|
48
|
|
|
:param artifacts_zingers_percentage: add broken pixels to projections, e.g. 0.25. Default: None. |
|
49
|
|
|
:param artifacts_stripes_percentage: the amount of stripes in the data, e.g. 1.0. Default: None. |
|
50
|
|
|
:param artifacts_stripes_maxthickness: defines the maximal thickness of a stripe. Default: 3.0. |
|
51
|
|
|
:param artifacts_stripes_intensity: to incorporate the change of intensity in the stripe. Default: 0.3. |
|
52
|
|
|
:param artifacts_stripes_type: set the stripe type between full and partial. Default: 'full'. |
|
53
|
|
|
:param artifacts_stripes_variability: the intensity variability of a stripe. Default: 0.007. |
|
54
|
|
|
:param out_datasets: Default out dataset names. Default: ['tomo', 'model'] |
|
55
|
|
|
""" |
|
56
|
|
|
|
|
57
|
|
|
def __init__(self): |
|
58
|
|
|
super(TomoPhantom, self).__init__('TomoPhantom') |
|
59
|
|
|
|
|
60
|
|
|
def get_max_frames(self): |
|
61
|
|
|
return 'single' |
|
62
|
|
|
|
|
63
|
|
|
def nInput_datasets(self): |
|
64
|
|
|
return 1 |
|
65
|
|
|
|
|
66
|
|
|
def nOutput_datasets(self): |
|
67
|
|
|
return 2 |
|
68
|
|
|
|
|
69
|
|
|
def map_volume_dimensions(self, data): |
|
70
|
|
|
data._finalise_patterns() |
|
71
|
|
|
dim_rotAngle = data.get_data_patterns()['PROJECTION']['main_dir'] |
|
72
|
|
|
sinogram = data.get_data_patterns()['SINOGRAM'] |
|
73
|
|
|
dim_detY = sinogram['main_dir'] |
|
74
|
|
|
|
|
75
|
|
|
core_dirs = sinogram['core_dims'] |
|
76
|
|
|
dim_detX = list(set(core_dirs).difference(set((dim_rotAngle,))))[0] |
|
77
|
|
|
|
|
78
|
|
|
dim_volX = dim_rotAngle |
|
79
|
|
|
dim_volY = dim_detY |
|
80
|
|
|
dim_volZ = dim_detX |
|
81
|
|
|
return dim_volX, dim_volY, dim_volZ |
|
82
|
|
|
|
|
83
|
|
|
def setup(self): |
|
84
|
|
|
in_dataset, self.out_dataset = self.get_datasets() |
|
85
|
|
|
in_pData, self.out_pData = self.get_plugin_datasets() |
|
86
|
|
|
in_pData[0].plugin_data_setup('SINOGRAM', self.get_max_frames()) |
|
87
|
|
|
|
|
88
|
|
|
[self.out_shape_sino, out_shape_phantom] = self.new_shape(in_dataset[0].get_shape(), in_dataset[0]) |
|
89
|
|
|
self.out_dataset[0].create_dataset(patterns=in_dataset[0], |
|
90
|
|
|
axis_labels=in_dataset[0], |
|
91
|
|
|
shape=self.out_shape_sino) |
|
92
|
|
|
self.out_pData[0].plugin_data_setup('SINOGRAM',self.get_max_frames()) |
|
93
|
|
|
|
|
94
|
|
|
dim_volX, dim_volY, dim_volZ = \ |
|
95
|
|
|
self.map_volume_dimensions(in_dataset[0]) |
|
96
|
|
|
|
|
97
|
|
|
axis_labels = [0]*3 |
|
98
|
|
|
axis_labels = {in_dataset[0]: |
|
99
|
|
|
[str(dim_volX) + '.voxel_x.voxels', |
|
100
|
|
|
str(dim_volY) + '.voxel_y.voxels', |
|
101
|
|
|
str(dim_volZ) + '.voxel_z.voxels']} |
|
102
|
|
|
|
|
103
|
|
|
self.out_dataset[1].create_dataset(axis_labels=axis_labels, |
|
104
|
|
|
shape=out_shape_phantom) |
|
105
|
|
|
self.out_dataset[1].add_volume_patterns(dim_volX, dim_volY, dim_volZ) |
|
106
|
|
|
|
|
107
|
|
|
self.out_pData[1].plugin_data_setup('VOLUME_XZ', self.get_max_frames()) |
|
108
|
|
|
|
|
109
|
|
|
self.angles = np.linspace(0.0,179.999,self.parameters['geom_projections_total'],dtype='float32') |
|
110
|
|
|
self.out_dataset[0].meta_data.set('rotation_angle', self.angles) |
|
111
|
|
|
|
|
112
|
|
|
def new_shape(self, full_shape, data): |
|
113
|
|
|
# calculate a new output data shape based on the input data shape |
|
114
|
|
|
core_dirs = data.get_core_dimensions() |
|
115
|
|
|
new_shape_sino = list(full_shape) |
|
116
|
|
|
new_shape_phantom = list(full_shape) |
|
117
|
|
|
new_shape_sino= (self.parameters['geom_projections_total'], new_shape_sino[1], self.parameters['geom_detectors_horiz']) |
|
118
|
|
|
for dim in core_dirs: |
|
119
|
|
|
new_shape_phantom[dim] = self.parameters['geom_model_size'] |
|
120
|
|
|
return [tuple(new_shape_sino), tuple(new_shape_phantom)] |
|
121
|
|
|
|
|
122
|
|
|
def pre_process(self): |
|
123
|
|
|
# set parameters for TomoPhantom: |
|
124
|
|
|
self.model = self.parameters['geom_model'] |
|
125
|
|
|
self.dims = self.parameters['geom_model_size'] |
|
126
|
|
|
self.proj_num = self.parameters['geom_projections_total'] |
|
127
|
|
|
self.detectors_num = self.parameters['geom_detectors_horiz'] |
|
128
|
|
|
path = os.path.dirname(tomophantom.__file__) |
|
129
|
|
|
self.path_library2D = os.path.join(path, "Phantom2DLibrary.dat") |
|
130
|
|
|
self.path_library3D = os.path.join(path, "Phantom3DLibrary.dat") |
|
131
|
|
|
#print "The full data shape is", self.get_in_datasets()[0].get_shape() |
|
132
|
|
|
|
|
133
|
|
|
def process_frames(self, data): |
|
134
|
|
|
# print "The input data shape is", data[0].shape |
|
135
|
|
|
if (self.out_shape_sino[1] == 1): |
|
136
|
|
|
# create a 2D phantom |
|
137
|
|
|
model = TomoP2D.Model(self.model, self.dims, self.path_library2D) |
|
138
|
|
|
# create a 2D sinogram |
|
139
|
|
|
projdata_clean = TomoP2D.ModelSino(self.model, self.dims, self.detectors_num, self.angles, self.path_library2D) |
|
140
|
|
|
# forming dictionaries with different artifact types and noise |
|
141
|
|
|
_noise_ = {'noise_type' : self.parameters['artifacts_noise_type'], |
|
142
|
|
|
'noise_sigma' : self.parameters['artifacts_noise_sigma'], |
|
143
|
|
|
'noise_seed' : 0} |
|
144
|
|
|
# misalignment dictionary |
|
145
|
|
|
_sinoshifts_ = {} |
|
146
|
|
|
if self.parameters['artifacts_misalignment_maxamplitude'] is not None: |
|
147
|
|
|
_sinoshifts_ = {'sinoshifts_maxamplitude' : self.parameters['artifacts_misalignment_maxamplitude']} |
|
148
|
|
|
|
|
149
|
|
|
# adding zingers and stripes |
|
150
|
|
|
_zingers_ = {} |
|
151
|
|
|
if self.parameters['artifacts_zingers_percentage'] is not None: |
|
152
|
|
|
_zingers_ = {'zingers_percentage' : self.parameters['artifacts_zingers_percentage'], |
|
153
|
|
|
'zingers_modulus' : 10} |
|
154
|
|
|
_stripes_ = {} |
|
155
|
|
|
if self.parameters['artifacts_stripes_percentage'] is not None: |
|
156
|
|
|
_stripes_ = {'stripes_percentage' : self.parameters['artifacts_stripes_percentage'], |
|
157
|
|
|
'stripes_maxthickness' : self.parameters['artifacts_stripes_maxthickness'], |
|
158
|
|
|
'stripes_intensity' : self.parameters['artifacts_stripes_intensity'], |
|
159
|
|
|
'stripes_type' : self.parameters['artifacts_stripes_type'], |
|
160
|
|
|
'stripes_variability' : self.parameters['artifacts_stripes_variability']} |
|
161
|
|
|
|
|
162
|
|
|
if self.parameters['artifacts_misalignment_maxamplitude'] is not None: |
|
163
|
|
|
[projdata, shifts] = _Artifacts_(projdata_clean, **_noise_, **_zingers_, **_stripes_, **_sinoshifts_) |
|
164
|
|
|
else: |
|
165
|
|
|
projdata = _Artifacts_(projdata_clean, **_noise_, **_zingers_, **_stripes_, **_sinoshifts_) |
|
166
|
|
|
else: |
|
167
|
|
|
# create a 3D phantom |
|
168
|
|
|
frame_idx = self.out_pData[0].get_current_frame_idx()[0] |
|
169
|
|
|
model = TomoP3D.ModelSub(self.model, self.dims, (frame_idx, frame_idx+1), self.path_library3D) |
|
170
|
|
|
model = np.swapaxes(model,0,1) |
|
171
|
|
|
model = np.flipud(model[:,0,:]) |
|
172
|
|
|
# create a 3D projection data |
|
173
|
|
|
projdata_clean = TomoP3D.ModelSinoSub(self.model, self.dims, self.detectors_num, self.dims, (frame_idx, frame_idx+1), self.angles, self.path_library3D) |
|
174
|
|
|
# forming dictionaries with different artifact types and noise |
|
175
|
|
|
_noise_ = {'noise_type' : self.parameters['artifacts_noise_type'], |
|
176
|
|
|
'noise_sigma' : self.parameters['artifacts_noise_sigma'], |
|
177
|
|
|
'noise_seed' : 0} |
|
178
|
|
|
# misalignment dictionary |
|
179
|
|
|
_sinoshifts_ = {} |
|
180
|
|
|
if self.parameters['artifacts_misalignment_maxamplitude'] is not None: |
|
181
|
|
|
_sinoshifts_ = {'sinoshifts_maxamplitude' : self.parameters['artifacts_misalignment_maxamplitude']} |
|
182
|
|
|
|
|
183
|
|
|
# adding zingers and stripes |
|
184
|
|
|
_zingers_ = {} |
|
185
|
|
|
if self.parameters['artifacts_zingers_percentage'] is not None: |
|
186
|
|
|
_zingers_ = {'zingers_percentage' : self.parameters['artifacts_zingers_percentage', |
|
187
|
|
|
'zingers_modulus' : 10} |
|
|
|
|
|
|
188
|
|
|
_stripes_ = {} |
|
189
|
|
|
if self.parameters['artifacts_stripes_percentage'] is not None: |
|
190
|
|
|
_stripes_ = {'stripes_percentage' : self.parameters['artifacts_stripes_percentage'], |
|
191
|
|
|
'stripes_maxthickness' : self.parameters['artifacts_stripes_maxthickness'], |
|
192
|
|
|
'stripes_intensity' : self.parameters['artifacts_stripes_intensity'], |
|
193
|
|
|
'stripes_type' : self.parameters['artifacts_stripes_type'], |
|
194
|
|
|
'stripes_variability' : self.parameters['artifacts_stripes_variability']} |
|
195
|
|
|
|
|
196
|
|
|
if self.parameters['artifacts_misalignment_maxamplitude'] is not None: |
|
197
|
|
|
[projdata, shifts] = _Artifacts_(projdata_clean, **_noise_, **_zingers_, **_stripes_, **_sinoshifts_) |
|
198
|
|
|
else: |
|
199
|
|
|
projdata = _Artifacts_(projdata_clean, **_noise_, **_zingers_, **_stripes_, **_sinoshifts_) |
|
200
|
|
|
projdata = np.swapaxes(projdata,0,1) |
|
201
|
|
|
return [projdata, model] |
|
202
|
|
|
|
|
203
|
|
|
def get_citation_information(self): |
|
204
|
|
|
cite_info1 = CitationInformation() |
|
205
|
|
|
cite_info1.name = 'citation1' |
|
206
|
|
|
cite_info1.description = \ |
|
207
|
|
|
("TomoPhantom is a software package to generate 2D-4D analytical phantoms and their Radon transforms for various testing purposes.") |
|
208
|
|
|
cite_info1.bibtex = \ |
|
209
|
|
|
("@article{kazantsevTP2018,\n" + |
|
210
|
|
|
"title={TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks},\n" + |
|
211
|
|
|
"author={Daniil and Kazantsev, Valery and Pickalov, Srikanth and Nagella, Edoardo and Pasca, Philip and Withers},\n" + |
|
212
|
|
|
"journal={Software X},\n" + |
|
213
|
|
|
"volume={7},\n" + |
|
214
|
|
|
"number={--},\n" + |
|
215
|
|
|
"pages={150--155},\n" + |
|
216
|
|
|
"year={2018},\n" + |
|
217
|
|
|
"publisher={Elsevier}\n" + |
|
218
|
|
|
"}") |
|
219
|
|
|
cite_info1.endnote = \ |
|
220
|
|
|
("%0 Journal Article\n" + |
|
221
|
|
|
"%T TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks\n" + |
|
222
|
|
|
"%A Kazantsev, Daniil\n" + |
|
223
|
|
|
"%A Pickalov, Valery\n" + |
|
224
|
|
|
"%A Nagella, Srikanth\n" + |
|
225
|
|
|
"%A Pasca, Edoardo\n" + |
|
226
|
|
|
"%A Withers, Philip\n" + |
|
227
|
|
|
"%J Software X\n" + |
|
228
|
|
|
"%V 7\n" + |
|
229
|
|
|
"%N --\n" + |
|
230
|
|
|
"%P 150--155\n" + |
|
231
|
|
|
"%@ --\n" + |
|
232
|
|
|
"%D 2018\n" + |
|
233
|
|
|
"%I Elsevier\n") |
|
234
|
|
|
cite_info1.doi = "doi:10.1016/j.softx.2018.05.003" |
|
235
|
|
|
return [cite_info1] |
|
236
|
|
|
|