Test Failed
Pull Request — master (#700)
by Daniil
03:05
created

savu.plugins.reconstructions.projectors.forward_projector_cpu   A

Complexity

Total Complexity 7

Size/Duplication

Total Lines 109
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 53
dl 0
loc 109
rs 10
c 0
b 0
f 0
wmc 7

7 Methods

Rating   Name   Duplication   Size   Complexity  
A ForwardProjectorCpu.get_max_frames() 0 2 1
A ForwardProjectorCpu.new_shape() 0 5 1
A ForwardProjectorCpu.nInput_datasets() 0 2 1
A ForwardProjectorCpu.nOutput_datasets() 0 2 1
A ForwardProjectorCpu.__init__() 0 2 1
A ForwardProjectorCpu.process_frames() 0 12 1
A ForwardProjectorCpu.setup() 0 26 1
1
# Copyright 2014 Diamond Light Source Ltd.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4
# you may not use this file except in compliance with the License.
5
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9
# Unless required by applicable law or agreed to in writing, software
10
# distributed under the License is distributed on an "AS IS" BASIS,
11
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
"""
16
.. module:: forward_projector_cpu
17
   :platform: Unix
18
   :synopsis: A forward data projector using ToMoBAR software
19
20
.. moduleauthor:: Daniil Kazantsev <[email protected]>
21
"""
22
23
from savu.plugins.plugin import Plugin
24
from savu.plugins.driver.cpu_plugin import CpuPlugin
25
from savu.plugins.utils import register_plugin
26
27
from tomobar.methodsDIR import RecToolsDIR
28
import numpy as np
29
30
@register_plugin
31
class ForwardProjectorCpu(Plugin, CpuPlugin):
32
    """
33
    This plugin uses ToMoBAR software and CPU Astra projector underneath to generate projection data.
34
    The plugin will project the given object using the metadata OR user-provided parallel-beam geometry.
35
36
    :param angles_deg: Projection angles in degrees in a format [start, stop, step]. Default: [0.0, 180.0, 0.5].
37
    :param det_horiz: The size of the _horizontal_ detector. Default: 300.
38
    :param centre_of_rotation: The centre of rotation. Default: 0.0.
39
    :param out_datasets: Default out dataset names. Default: ['forw_proj']
40
    """
41
42
    def __init__(self):
43
        super(ForwardProjectorCpu, self).__init__('ForwardProjectorCpu')
44
45
    #def pre_process(self):
46
        # getting metadata
47
        #in_meta_data = self.get_in_meta_data()[0]
48
        #self.angles_meta_deg = in_meta_data.get('rotation_angle')
49
        #self.angles_rad = np.deg2rad(self.angles_meta_deg)
50
        #self.cor = in_meta_data.get('centre_of_rotation')
51
        #self.cor=self.cor[0]
52
        #print(self.cor)
53
        #self.detectors_horiz = in_meta_data.get('detector_x')
54
55
    def setup(self):
56
        in_dataset, out_dataset = self.get_datasets()
57
        in_pData, out_pData = self.get_plugin_datasets()
58
        in_pData[0].plugin_data_setup('VOLUME_XZ', 'single')
59
60
        #print(in_dataset[0].meta_data.get("rotation_angle"))
61
        in_meta_data2=self.get_in_meta_data()[0]
62
        angles_meta_deg = in_meta_data2.get('rotation_angle')
63
64
        # user-set parameters
65
        angles_list=self.parameters['angles_deg']
66
        self.cor=self.parameters['centre_of_rotation']
67
        self.angles_rad = np.deg2rad(np.arange(angles_list[0], angles_list[1], angles_list[2], dtype=np.float))
68
        self.detectors_horiz = self.parameters['det_horiz']
69
        self.angles_total = len(self.angles_rad)
70
71
        out_shape_sino = self.new_shape(in_dataset[0].get_shape(), in_dataset[0])
72
        label = ['x.pixels', 'proj.angles', 'y.pixels']
73
        pattern = {'name': 'SINOGRAM', 'slice_dims': (1,),
74
                   'core_dims': (0,2)}
75
        out_dataset[0].create_dataset(axis_labels=label, shape=out_shape_sino)
76
        out_dataset[0].add_pattern(pattern['name'],
77
                                   slice_dims=pattern['slice_dims'],
78
                                   core_dims=pattern['core_dims'])
79
        out_pData[0].plugin_data_setup(pattern['name'], self.get_max_frames())
80
        out_dataset[0].meta_data.set('rotation_angle', self.angles_rad)
81
82
    def process_frames(self, data):
83
        image = data[0].astype(np.float32)
84
        image = np.where(np.isfinite(image), image, 0)
85
        objsize_image = np.shape(image)[0]
86
        RectoolsDIR = RecToolsDIR(DetectorsDimH = self.detectors_horiz,  # DetectorsDimH # detector dimension (horizontal)
87
                            DetectorsDimV = None,  # DetectorsDimV # detector dimension (vertical) for 3D case only
88
                            CenterRotOffset = self.cor, # Center of Rotation (CoR) scalar
89
                            AnglesVec = self.angles_rad, # array of angles in radians
90
                            ObjSize = objsize_image, # a scalar to define reconstructed object dimensions
91
                            device_projector='cpu')
92
        sinogram_new = RectoolsDIR.FORWPROJ(image)
93
        return sinogram_new
94
95
    def new_shape(self, full_shape, data):
96
        # calculate a new output data shape based on the input data shape
97
        new_shape_sino_orig = list(full_shape)
98
        new_shape_sino= (self.angles_total, new_shape_sino_orig[1], self.detectors_horiz)
99
        return tuple(new_shape_sino)
100
101
    def get_max_frames(self):
102
        return 'single'
103
104
    def nInput_datasets(self):
105
        return 1
106
107
    def nOutput_datasets(self):
108
        return 1
109