1
|
|
|
""" |
2
|
|
|
.. module:: statistics |
3
|
|
|
:platform: Unix |
4
|
|
|
:synopsis: Contains and processes statistics information for each plugin. |
5
|
|
|
|
6
|
|
|
.. moduleauthor::Jacob Williamson <[email protected]> |
7
|
|
|
|
8
|
|
|
""" |
9
|
|
|
|
10
|
|
|
from savu.plugins.savers.utils.hdf5_utils import Hdf5Utils |
11
|
|
|
|
12
|
|
|
import h5py as h5 |
13
|
|
|
import numpy as np |
14
|
|
|
import os |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class Statistics(object): |
18
|
|
|
pattern_list = ["SINOGRAM", "PROJECTION", "VOLUME_YZ", "VOLUME_XZ", "VOLUME_XY", "VOLUME_3D", "4D_SCAN", "SINOMOVIE"] |
19
|
|
|
no_stats_plugins = ["BasicOperations", "Mipmap"] |
20
|
|
|
|
21
|
|
|
def __init__(self): |
22
|
|
|
self.calc_stats = True |
23
|
|
|
self.stats = {'max': [], 'min': [], 'mean': [], 'std_dev': [], 'RSS': [], 'data_points': []} |
24
|
|
|
self.stats_before_processing = {'max': [], 'min': [], 'mean': [], 'std_dev': []} |
25
|
|
|
self.residuals = {'max': [], 'min': [], 'mean': [], 'std_dev': []} |
26
|
|
|
|
27
|
|
|
def setup(self, plugin_self): |
28
|
|
|
if plugin_self.name in Statistics.no_stats_plugins: |
29
|
|
|
self.calc_stats = False |
30
|
|
|
if self.calc_stats: |
31
|
|
|
self.plugin = plugin_self |
32
|
|
|
self.plugin_name = plugin_self.name |
33
|
|
|
self.pad_dims = [] |
34
|
|
|
self._already_called = False |
35
|
|
|
self._set_pattern_info() |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
@classmethod |
39
|
|
|
def _setup_class(cls, exp): |
40
|
|
|
"""Sets up the statistics class for the whole experiment (only called once)""" |
41
|
|
|
cls.count = 2 |
42
|
|
|
cls.data_stats = {} |
43
|
|
|
cls.volume_stats = {} |
44
|
|
|
cls.global_stats = {} |
45
|
|
|
cls.global_residuals = {} |
46
|
|
|
cls.plugin_numbers = {} |
47
|
|
|
n_plugins = len(exp.meta_data.plugin_list.plugin_list) |
48
|
|
|
cls.path = exp.meta_data['out_path'] |
49
|
|
|
if cls.path[-1] == '/': |
50
|
|
|
cls.path = cls.path[0:-1] |
51
|
|
|
cls.path = f"{cls.path}/stats" |
52
|
|
|
if not os.path.exists(cls.path): |
53
|
|
|
os.mkdir(cls.path) |
54
|
|
|
|
55
|
|
|
def set_slice_stats(self, slice, base_slice): |
56
|
|
|
slice_stats_before = self.calc_slice_stats(base_slice) |
57
|
|
|
slice_stats_after = self.calc_slice_stats(slice, base_slice) |
58
|
|
|
for key in list(self.stats_before_processing.keys()): |
59
|
|
|
self.stats_before_processing[key].append(slice_stats_before[key]) |
60
|
|
|
for key in list(self.stats.keys()): |
61
|
|
|
self.stats[key].append(slice_stats_after[key]) |
62
|
|
|
|
63
|
|
|
def calc_slice_stats(self, my_slice, base_slice=None): |
64
|
|
|
"""Calculates and returns slice stats for the current slice. |
65
|
|
|
|
66
|
|
|
:param slice1: The slice whose stats are being calculated. |
67
|
|
|
""" |
68
|
|
|
if my_slice is not None: |
69
|
|
|
slice_num = self.plugin.pcount |
70
|
|
|
my_slice = self._de_list(my_slice) |
71
|
|
|
my_slice = self._unpad_slice(my_slice) |
72
|
|
|
slice_stats = {'max': np.amax(my_slice).astype('float64'), 'min': np.amin(my_slice).astype('float64'), |
73
|
|
|
'mean': np.mean(my_slice), 'std_dev': np.std(my_slice), 'data_points': my_slice.size} |
74
|
|
|
if base_slice is not None: |
75
|
|
|
base_slice = self._de_list(base_slice) |
76
|
|
|
base_slice = self._unpad_slice(base_slice) |
77
|
|
|
rss = self._calc_rss(my_slice, base_slice) |
78
|
|
|
else: |
79
|
|
|
rss = None |
80
|
|
|
slice_stats['RSS'] = rss |
81
|
|
|
return slice_stats |
82
|
|
|
return None |
83
|
|
|
|
84
|
|
|
def _calc_rss(self, array1, array2): # residual sum of squares |
85
|
|
|
if array1.shape == array2.shape: |
86
|
|
|
residuals = np.subtract(array1, array2) |
87
|
|
|
rss = sum(value**2 for value in np.nditer(residuals)) |
88
|
|
|
else: |
89
|
|
|
print("Warning: cannot calculate RSS, arrays different sizes.") # need to make this an actual warning |
90
|
|
|
rss = None |
91
|
|
|
return rss |
92
|
|
|
|
93
|
|
|
def _rmsd_from_rss(self, rss, n): |
94
|
|
|
return np.sqrt(rss/n) |
95
|
|
|
|
96
|
|
|
def calc_rmsd(self, array1, array2): |
97
|
|
|
if array1.shape == array2.shape: |
98
|
|
|
rss = self._calc_rss(array1, array2) |
99
|
|
|
rmsd = self._rmsd_from_rss(rss, array1.size) |
100
|
|
|
else: |
101
|
|
|
print("Warning: cannot calculate RMSD, arrays different sizes.") # need to make this an actual warning |
102
|
|
|
rmsd = None |
103
|
|
|
return rmsd |
104
|
|
|
|
105
|
|
|
def calc_stats_residuals(self, stats_before, stats_after): |
106
|
|
|
residuals = {'max': None, 'min': None, 'mean': None, 'std_dev': None} |
107
|
|
|
for key in list(residuals.keys()): |
108
|
|
|
residuals[key] = stats_after[key] - stats_before[key] |
109
|
|
|
return residuals |
110
|
|
|
|
111
|
|
|
def set_stats_residuals(self, residuals): |
112
|
|
|
self.residuals['max'].append(residuals['max']) |
113
|
|
|
self.residuals['min'].append(residuals['min']) |
114
|
|
|
self.residuals['mean'].append(residuals['mean']) |
115
|
|
|
self.residuals['std_dev'].append(residuals['std_dev']) |
116
|
|
|
|
117
|
|
|
def calc_volume_stats(self, slice_stats): |
118
|
|
|
volume_stats = {'max': max(slice_stats['max']), 'min': min(slice_stats['min']), |
119
|
|
|
'mean': np.mean(slice_stats['mean']), 'mean_std_dev': np.mean(slice_stats['std_dev']), |
120
|
|
|
'median_std_dev': np.median(slice_stats['std_dev'])} |
121
|
|
|
return volume_stats |
122
|
|
|
|
123
|
|
|
def set_volume_stats(self): |
124
|
|
|
"""Calculates volume-wide statistics from slice stats, and updates class-wide arrays with these values. |
125
|
|
|
Links volume stats with the output dataset and writes slice stats to file. |
126
|
|
|
""" |
127
|
|
|
p_num = Statistics.count |
128
|
|
|
name = self.plugin_name |
129
|
|
|
i = 2 |
130
|
|
|
while name in list(Statistics.plugin_numbers.keys()): |
131
|
|
|
name = self.plugin_name + str(i) |
132
|
|
|
i += 1 |
133
|
|
|
Statistics.global_stats[p_num] = {} |
134
|
|
|
if len(self.stats['max']) != 0: |
135
|
|
|
Statistics.global_stats[p_num] = self.calc_volume_stats(self.stats) |
136
|
|
|
Statistics.global_residuals[p_num] = {} |
137
|
|
|
before_processing = self.calc_volume_stats(self.stats_before_processing) |
138
|
|
|
for key in list(before_processing.keys()): |
139
|
|
|
Statistics.global_residuals[p_num][key] = Statistics.global_stats[p_num][key] - before_processing[key] |
140
|
|
|
if None not in self.stats['RSS']: |
141
|
|
|
total_rss = sum(self.stats['RSS']) |
142
|
|
|
n = sum(self.stats['data_points']) |
143
|
|
|
Statistics.global_stats[p_num]['RMSD'] = self._rmsd_from_rss(total_rss, n) |
144
|
|
|
else: |
145
|
|
|
Statistics.global_stats[p_num]['RMSD'] = None |
146
|
|
|
|
147
|
|
|
Statistics.plugin_numbers[name] = p_num |
148
|
|
|
self._link_stats_to_datasets(Statistics.global_stats[Statistics.plugin_numbers[name]]) |
149
|
|
|
|
150
|
|
|
slice_stats_array = np.array([self.stats['max'], self.stats['min'], self.stats['mean'], self.stats['std_dev']]) |
151
|
|
|
self._write_stats_to_file(slice_stats_array, p_num) |
152
|
|
|
self._already_called = True |
153
|
|
|
|
154
|
|
|
def get_stats(self, plugin_name, n=None, stat=None): |
155
|
|
|
"""Returns stats associated with a certain plugin. |
156
|
|
|
|
157
|
|
|
:param plugin_name: name of the plugin whose associated stats are being fetched. |
158
|
|
|
:param n: In a case where there are multiple instances of **plugin_name** in the process list, |
159
|
|
|
specify the nth instance. Not specifying will select the first (or only) instance. |
160
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
161
|
|
|
If left blank will return the whole dictionary of stats: |
162
|
|
|
{'max': , 'min': , 'mean': , 'mean_std_dev': , 'median_std_dev': } |
163
|
|
|
""" |
164
|
|
|
name = plugin_name |
165
|
|
|
if n is not None and n not in (0, 1): |
166
|
|
|
name = name + str(n) |
167
|
|
|
p_num = Statistics.plugin_numbers[name] |
168
|
|
|
return self.get_stats_from_num(p_num, stat) |
169
|
|
|
|
170
|
|
|
def get_stats_from_num(self, p_num, stat=None): |
171
|
|
|
"""Returns stats associated with a certain plugin, given the plugin number (its place in the process list). |
172
|
|
|
|
173
|
|
|
:param p_num: Plugin number of the plugin whose associated stats are being fetched. |
174
|
|
|
If p_num <= 0, it is relative to the plugin number of the current plugin being run. |
175
|
|
|
E.g current plugin number = 5, p_num = -2 --> will return stats of the third plugin. |
176
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
177
|
|
|
If left blank will return the whole dictionary of stats: |
178
|
|
|
{'max': , 'min': , 'mean': , 'mean_std_dev': , 'median_std_dev': } |
179
|
|
|
""" |
180
|
|
|
if p_num <= 0: |
181
|
|
|
p_num = Statistics.count + p_num |
182
|
|
|
if stat is not None: |
183
|
|
|
return Statistics.global_stats[p_num][stat] |
184
|
|
|
else: |
185
|
|
|
return Statistics.global_stats[p_num] |
186
|
|
|
|
187
|
|
|
def get_stats_from_dataset(self, dataset, stat=None, set_num=None): |
188
|
|
|
"""Returns stats associated with a dataset. |
189
|
|
|
|
190
|
|
|
:param dataset: The dataset whose associated stats are being fetched. |
191
|
|
|
:param stat: Specify the stat parameter you want to fetch, i.e 'max', 'mean', 'median_std_dev'. |
192
|
|
|
If left blank will return the whole dictionary of stats: |
193
|
|
|
{'max': , 'min': , 'mean': , 'mean_std_dev': , 'median_std_dev': } |
194
|
|
|
:param set_num: In the (rare) case that there are multiple sets of stats associated with the dataset, |
195
|
|
|
specify which set to return. |
196
|
|
|
|
197
|
|
|
""" |
198
|
|
|
key = "stats" |
199
|
|
|
stats = {} |
200
|
|
|
if set_num is not None and set_num not in (0, 1): |
201
|
|
|
key = key + str(set_num) |
202
|
|
|
stats = dataset.meta_data.get(key) |
203
|
|
|
if stat is not None: |
204
|
|
|
return stats[stat] |
205
|
|
|
else: |
206
|
|
|
return stats |
207
|
|
|
|
208
|
|
|
def get_data_stats(self): |
209
|
|
|
return Statistics.data_stats |
210
|
|
|
|
211
|
|
|
def get_volume_stats(self): |
212
|
|
|
return Statistics.volume_stats |
213
|
|
|
|
214
|
|
|
def get_global_stats(self): |
215
|
|
|
return Statistics.global_stats |
216
|
|
|
|
217
|
|
|
def _set_pattern_info(self): |
218
|
|
|
"""Gathers information about the pattern of the data in the current plugin.""" |
219
|
|
|
in_datasets, out_datasets = self.plugin.get_datasets() |
220
|
|
|
try: |
221
|
|
|
self.pattern = self.plugin.parameters['pattern'] |
222
|
|
|
if self.pattern == None: |
223
|
|
|
raise KeyError |
224
|
|
|
except KeyError: |
225
|
|
|
if not out_datasets: |
226
|
|
|
self.pattern = None |
227
|
|
|
else: |
228
|
|
|
patterns = out_datasets[0].get_data_patterns() |
229
|
|
|
for pattern in patterns: |
230
|
|
|
if 1 in patterns.get(pattern)["slice_dims"]: |
231
|
|
|
self.pattern = pattern |
232
|
|
|
break |
233
|
|
|
self.calc_stats = False |
234
|
|
|
for dataset in out_datasets: |
235
|
|
|
if bool(set(Statistics.pattern_list) & set(dataset.data_info.get("data_patterns"))): |
236
|
|
|
self.calc_stats = True |
237
|
|
|
|
238
|
|
|
def _link_stats_to_datasets(self, stats): |
239
|
|
|
"""Links the volume wide statistics to the output dataset(s)""" |
240
|
|
|
out_dataset = self.plugin.get_out_datasets()[0] |
241
|
|
|
n_datasets = self.plugin.nOutput_datasets() |
242
|
|
|
i = 2 |
243
|
|
|
group_name = "stats" |
244
|
|
|
if n_datasets == 1: |
245
|
|
|
while group_name in list(out_dataset.meta_data.get_dictionary().keys()): |
246
|
|
|
group_name = f"stats{i}" |
247
|
|
|
i += 1 |
248
|
|
|
for key in list(stats.keys()): |
249
|
|
|
out_dataset.meta_data.set([group_name, key], stats[key]) |
250
|
|
|
|
251
|
|
|
def _write_stats_to_file(self, slice_stats_array, p_num): |
252
|
|
|
"""Writes slice statistics to a h5 file""" |
253
|
|
|
path = Statistics.path |
254
|
|
|
filename = f"{path}/stats_p{p_num}_{self.plugin_name}.h5" |
255
|
|
|
slice_stats_dim = (slice_stats_array.shape[1],) |
256
|
|
|
self.hdf5 = Hdf5Utils(self.plugin.exp) |
257
|
|
|
with h5.File(filename, "a") as h5file: |
258
|
|
|
i = 2 |
259
|
|
|
group_name = "/stats" |
260
|
|
|
while group_name in h5file: |
261
|
|
|
group_name = f"/stats{i}" |
262
|
|
|
i += 1 |
263
|
|
|
group = h5file.create_group(group_name, track_order=None) |
264
|
|
|
max_ds = self.hdf5.create_dataset_nofill(group, "max", slice_stats_dim, slice_stats_array.dtype) |
265
|
|
|
min_ds = self.hdf5.create_dataset_nofill(group, "min", slice_stats_dim, slice_stats_array.dtype) |
266
|
|
|
mean_ds = self.hdf5.create_dataset_nofill(group, "mean", slice_stats_dim, slice_stats_array.dtype) |
267
|
|
|
std_dev_ds = self.hdf5.create_dataset_nofill(group, "standard_deviation", |
268
|
|
|
slice_stats_dim, slice_stats_array.dtype) |
269
|
|
|
if slice_stats_array.shape[0] == 5: |
270
|
|
|
rmsd_ds = self.hdf5.create_dataset_nofill(group, "RMSD", slice_stats_dim, slice_stats_array.dtype) |
271
|
|
|
rmsd_ds[::] = slice_stats_array[4] |
272
|
|
|
max_ds[::] = slice_stats_array[0] |
273
|
|
|
min_ds[::] = slice_stats_array[1] |
274
|
|
|
mean_ds[::] = slice_stats_array[2] |
275
|
|
|
std_dev_ds[::] = slice_stats_array[3] |
276
|
|
|
|
277
|
|
|
def _unpad_slice(self, slice1): |
278
|
|
|
"""If data is padded in the slice dimension, removes this pad.""" |
279
|
|
|
out_datasets = self.plugin.get_out_datasets() |
280
|
|
|
if len(out_datasets) == 1: |
281
|
|
|
out_dataset = out_datasets[0] |
282
|
|
|
else: |
283
|
|
|
for dataset in out_datasets: |
284
|
|
|
if self.pattern in list(dataset.data_info.get(["data_patterns"]).keys()): |
285
|
|
|
out_dataset = dataset |
286
|
|
|
break |
287
|
|
|
slice_dims = out_dataset.get_slice_dimensions() |
|
|
|
|
288
|
|
|
if self.plugin.pcount == 0: |
289
|
|
|
self.slice_list, self.pad = self._get_unpadded_slice_list(slice1, slice_dims) |
290
|
|
|
if self.pad: |
291
|
|
|
for slice_dim in slice_dims: |
292
|
|
|
temp_slice = np.swapaxes(slice1, 0, slice_dim) |
293
|
|
|
temp_slice = temp_slice[self.slice_list[slice_dim]] |
294
|
|
|
slice1 = np.swapaxes(temp_slice, 0, slice_dim) |
295
|
|
|
return slice1 |
296
|
|
|
|
297
|
|
|
def _get_unpadded_slice_list(self, slice1, slice_dims): |
298
|
|
|
"""Creates slice object(s) to un-pad slices in the slice dimension(s).""" |
299
|
|
|
slice_list = list(self.plugin.slice_list[0]) |
300
|
|
|
pad = False |
301
|
|
|
if len(slice_list) == len(slice1.shape): |
302
|
|
|
for i in slice_dims: |
303
|
|
|
slice_width = self.plugin.slice_list[0][i].stop - self.plugin.slice_list[0][i].start |
304
|
|
|
if slice_width != slice1.shape[i]: |
305
|
|
|
pad = True |
306
|
|
|
pad_width = (slice1.shape[i] - slice_width) // 2 # Assuming symmetrical padding |
307
|
|
|
slice_list[i] = slice(pad_width, pad_width + 1, 1) |
308
|
|
|
return tuple(slice_list), pad |
309
|
|
|
else: |
310
|
|
|
return self.plugin.slice_list[0], pad |
311
|
|
|
|
312
|
|
|
def _de_list(self, slice1): |
313
|
|
|
"""If the slice is in a list, remove it from that list.""" |
314
|
|
|
if type(slice1) == list: |
315
|
|
|
if len(slice1) != 0: |
316
|
|
|
slice1 = slice1[0] |
317
|
|
|
slice1 = self._de_list(slice1) |
318
|
|
|
return slice1 |
319
|
|
|
|
320
|
|
|
@classmethod |
321
|
|
|
def _count(cls): |
322
|
|
|
cls.count += 1 |
323
|
|
|
|
324
|
|
|
@classmethod |
325
|
|
|
def _post_chain(cls): |
326
|
|
|
print(cls.data_stats) |
327
|
|
|
print(cls.volume_stats) |
328
|
|
|
print(cls.global_stats) |
329
|
|
|
print(cls.global_residuals) |