Test Failed
Pull Request — master (#830)
by Daniil
04:02
created

dezinger_simple_deprecated   A

Complexity

Total Complexity 15

Size/Duplication

Total Lines 115
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 69
dl 0
loc 115
rs 10
c 0
b 0
f 0
wmc 15

9 Methods

Rating   Name   Duplication   Size   Complexity  
A DezingerSimpleDeprecated.__init__() 0 4 1
A DezingerSimpleDeprecated._process_calibration_frames() 0 11 2
A DezingerSimpleDeprecated.get_max_frames() 0 3 1
A DezingerSimpleDeprecated.executive_summary() 0 6 3
A DezingerSimpleDeprecated.set_filter_padding() 0 10 2
A DezingerSimpleDeprecated._dezing() 0 10 1
A DezingerSimpleDeprecated.raw_data() 0 2 1
A DezingerSimpleDeprecated.pre_process() 0 20 3
A DezingerSimpleDeprecated.process_frames() 0 2 1
1
# Copyright 2014 Diamond Light Source Ltd.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4
# you may not use this file except in compliance with the License.
5
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9
# Unless required by applicable law or agreed to in writing, software
10
# distributed under the License is distributed on an "AS IS" BASIS,
11
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
# $Id: dezing_filter.py 467 2016-02-16 11:40:42Z kny48981 $
15
16
17
"""
18
.. module:: dezinger_simple_deprecated
19
   :platform: Unix
20
   :synopsis: A plugin to remove zingers
21
22
.. moduleauthor:: Mark Basham <[email protected]>
23
24
"""
25
26
import numpy as np
27
28
import scipy.signal.signaltools as sig
29
30
from savu.plugins.filters.base_filter import BaseFilter
31
from savu.plugins.driver.cpu_plugin import CpuPlugin
32
from savu.plugins.utils import register_plugin
33
34
35
class DezingerSimpleDeprecated(BaseFilter, CpuPlugin):
36
    """
37
    """
38
39
    def __init__(self):
40
        super(DezingerSimpleDeprecated, self).__init__("DezingerSimpleDeprecated")
41
        self.zinger_proportion = 0.0
42
        self.frame_limit = 8
43
44
    def pre_process(self):
45
        inData = self.get_in_datasets()[0]
46
        self.proj_dim = inData.data.proj_dim
47
48
        self._kernel = [1]*3
49
        self._kernel[self.proj_dim] = self.kernel_size
50
51
        pad_list = [(0, 0)]*3
52
        pad_list[self.proj_dim] = (self.pad, self.pad)
53
54
        dark = inData.data.dark()
55
        flat = inData.data.flat()
56
        if dark.size:
57
            dark = np.pad(inData.data.dark(), pad_list, mode='edge')
58
            dark = self._process_calibration_frames(dark)
59
            inData.data.update_dark(dark[self.pad:-self.pad])
60
        if flat.size:
61
            flat = np.pad(inData.data.flat(), pad_list, mode='edge')
62
            flat = self._process_calibration_frames(flat)
63
            inData.data.update_flat(flat[self.pad:-self.pad])
64
65
    def _process_calibration_frames(self, data):
66
        nSlices = data.shape[self.proj_dim] - 2*self.pad
67
        nSublists = int(np.ceil(nSlices/float(self.frame_limit)))
68
        idx = np.array_split(np.arange(self.pad, nSlices+self.pad), nSublists)
69
        idx = [np.arange(a[0]-self.pad, a[-1]+self.pad+1) for a in idx]
70
        out_sl = np.tile([slice(None)]*3, [len(idx), 1])
71
        out_sl[:, self.proj_dim] = idx
72
        result = np.empty_like(data)
73
        for sl in out_sl:
74
            result[tuple(sl)] = self._dezing(data[tuple(sl)])
0 ignored issues
show
Comprehensibility Best Practice introduced by
The variable tuple does not seem to be defined.
Loading history...
75
        return result
76
77
    def _dezing(self, data):
78
        result = data[...]
79
        median_result = sig.medfilt(data, self._kernel)
80
        differrence = np.abs(data-median_result)
81
        replace_mask = differrence > self.parameters['outlier_mu']
82
        self.zinger_proportion = \
83
            max(self.zinger_proportion, np.sum(replace_mask)/(
84
                np.size(replace_mask)*1.0))
85
        result[replace_mask] = median_result[replace_mask]
86
        return result
87
88
    def process_frames(self, data):
89
        return self._dezing(data[0])
90
91
    def get_max_frames(self):
92
        """ Setting nFrames to multiple with an upper limit of 4 frames. """
93
        return ['multiple', self.frame_limit]
94
95
    def raw_data(self):
96
        return True
97
98
    def set_filter_padding(self, in_data, out_data):
99
        # kernel size must be odd
100
        ksize = self.parameters['kernel_size']
101
        self.kernel_size = ksize+1 if ksize % 2 == 0 else ksize
102
103
        in_data = in_data[0]
104
        self.pad = (self.kernel_size - 1) // 2
105
        self.data_size = in_data.get_shape()
106
        in_data.padding = {'pad_multi_frames': self.pad}
107
        out_data[0].padding = {'pad_multi_frames': self.pad}
108
109
    def executive_summary(self):
110
        if self.zinger_proportion > 0.5:
111
            return ["Over 50% of the pixels were treated as zingers!!"]
112
        if self.zinger_proportion > 0.05:
113
            return ["Over 5% of the pixels were treated as zingers"]
114
        return ["Nothing to Report"]
115