| @@ 354-376 (lines=23) @@ | ||
| 351 | cor = ncol - overlap / 2.0 - 1.0 |
|
| 352 | return [np.array([cor]), np.array([cor])] |
|
| 353 | ||
| 354 | def post_process(self): |
|
| 355 | in_datasets, out_datasets = self.get_datasets() |
|
| 356 | cor_prev = out_datasets[0].data[...] |
|
| 357 | cor_broad = out_datasets[1].data[...] |
|
| 358 | cor_broad[:] = np.median(np.squeeze(cor_prev)) |
|
| 359 | self.cor_for_executive_summary = np.median(cor_broad[:]) |
|
| 360 | if self.broadcast_method == 'mean': |
|
| 361 | cor_broad[:] = np.mean(np.squeeze(cor_prev)) |
|
| 362 | self.cor_for_executive_summary = np.mean(cor_broad[:]) |
|
| 363 | if (self.broadcast_method == 'linear_fit') and (len(cor_prev) > 1): |
|
| 364 | afact, bfact = np.polyfit(self.plugin_prev, cor_prev[:, 0], 1) |
|
| 365 | list_cor = self.origin_prev * afact + bfact |
|
| 366 | cor_broad[:, 0] = list_cor |
|
| 367 | self.cor_for_executive_summary = cor_broad[:] |
|
| 368 | if (self.broadcast_method == 'nearest') and (len(cor_prev) > 1): |
|
| 369 | for i, pos in enumerate(self.origin_prev): |
|
| 370 | minpos = np.argmin(np.abs(pos - self.plugin_prev)) |
|
| 371 | cor_broad[i, 0] = cor_prev[minpos, 0] |
|
| 372 | self.cor_for_executive_summary = cor_broad[:] |
|
| 373 | out_datasets[1].data[:] = cor_broad[:] |
|
| 374 | self.populate_meta_data('cor_preview', np.squeeze(cor_prev)) |
|
| 375 | self.populate_meta_data('centre_of_rotation', |
|
| 376 | out_datasets[1].data[:].squeeze(axis=1)) |
|
| 377 | ||
| 378 | def populate_meta_data(self, key, value): |
|
| 379 | datasets = self.parameters['datasets_to_populate'] |
|
| @@ 234-256 (lines=23) @@ | ||
| 231 | self.search_step, self.ratio, self.drop) |
|
| 232 | return [np.array([cor]), np.array([cor])] |
|
| 233 | ||
| 234 | def post_process(self): |
|
| 235 | in_datasets, out_datasets = self.get_datasets() |
|
| 236 | cor_prev = out_datasets[0].data[...] |
|
| 237 | cor_broad = out_datasets[1].data[...] |
|
| 238 | cor_broad[:] = np.median(np.squeeze(cor_prev)) |
|
| 239 | self.cor_for_executive_summary = np.median(cor_broad[:]) |
|
| 240 | if self.broadcast_method == 'mean': |
|
| 241 | cor_broad[:] = np.mean(np.squeeze(cor_prev)) |
|
| 242 | self.cor_for_executive_summary = np.mean(cor_broad[:]) |
|
| 243 | if (self.broadcast_method == 'linear_fit') and (len(cor_prev) > 1): |
|
| 244 | afact, bfact = np.polyfit(self.plugin_prev, cor_prev[:, 0], 1) |
|
| 245 | list_cor = self.origin_prev * afact + bfact |
|
| 246 | cor_broad[:, 0] = list_cor |
|
| 247 | self.cor_for_executive_summary = cor_broad[:] |
|
| 248 | if (self.broadcast_method == 'nearest') and (len(cor_prev) > 1): |
|
| 249 | for i, pos in enumerate(self.origin_prev): |
|
| 250 | minpos = np.argmin(np.abs(pos - self.plugin_prev)) |
|
| 251 | cor_broad[i, 0] = cor_prev[minpos, 0] |
|
| 252 | self.cor_for_executive_summary = cor_broad[:] |
|
| 253 | out_datasets[1].data[:] = cor_broad[:] |
|
| 254 | self.populate_meta_data('cor_preview', np.squeeze(cor_prev)) |
|
| 255 | self.populate_meta_data('centre_of_rotation', |
|
| 256 | out_datasets[1].data[:].squeeze(axis=1)) |
|
| 257 | ||
| 258 | def populate_meta_data(self, key, value): |
|
| 259 | datasets = self.parameters['datasets_to_populate'] |
|