Code Duplication    Length = 86-86 lines in 2 locations

savu/plugins/reconstructions/projectors/forward_projector_gpu.py 1 location

@@ 30-115 (lines=86) @@
27
from tomobar.methodsDIR import RecToolsDIR
28
import numpy as np
29
30
@register_plugin
31
class ForwardProjectorGpu(Plugin, GpuPlugin):
32
    """
33
    This plugin uses ToMoBAR software and GPU Astra projector to generate parallel-beam projection data.
34
    The plugin will project the given object using the available metadata OR user-provided geometry.
35
    In case when angles set to None, the metadata projection geometry will be used.
36
37
    :param angles_deg: Projection angles in degrees in a format [start, stop, step]. Default: None.
38
    :param det_horiz: The size of the horizontal detector. Default: None.
39
    :param centre_of_rotation: The centre of rotation. Default: None.
40
    :param out_datasets: Default out dataset name. Default: ['forw_proj']
41
    """
42
43
    def __init__(self):
44
        super(ForwardProjectorGpu, self).__init__('ForwardProjectorGpu')
45
46
    def pre_process(self):
47
        #getting metadata
48
        in_meta_data = self.get_in_meta_data()[0]
49
        self.cor = in_meta_data.get('centre_of_rotation')
50
        self.cor=self.cor[0]
51
52
    def setup(self):
53
        in_dataset, out_dataset = self.get_datasets()
54
        in_pData, out_pData = self.get_plugin_datasets()
55
        in_pData[0].plugin_data_setup('VOLUME_XZ', 'single')
56
57
        if (self.parameters['angles_deg'] is None):
58
            # data extracted geometry parameters
59
            in_meta_data=self.get_in_meta_data()[0]
60
            angles_meta_deg = in_meta_data.get('rotation_angle')
61
            self.angles_rad = np.deg2rad(angles_meta_deg)
62
            self.detectors_horiz = in_meta_data.get('detector_x_length')
63
        else:
64
            # user-set parameters
65
            angles_list=self.parameters['angles_deg']
66
            self.cor=self.parameters['centre_of_rotation']
67
            self.angles_rad = np.deg2rad(np.linspace(angles_list[0], angles_list[1], angles_list[2], dtype=np.float))
68
            self.detectors_horiz = self.parameters['det_horiz']
69
70
        self.det_horiz_half=0.5*self.detectors_horiz
71
        self.angles_total = len(self.angles_rad)
72
73
        out_shape_sino = self.new_shape(in_dataset[0].get_shape(), in_dataset[0])
74
        labels = ['rotation_angle.degrees', 'detector_y.pixel', 'detector_x.pixel']
75
        pattern = {'name': 'SINOGRAM', 'slice_dims': (1,),
76
                   'core_dims': (2,0)}
77
        out_dataset[0].create_dataset(axis_labels=labels, shape=out_shape_sino)
78
        out_dataset[0].add_pattern(pattern['name'],
79
                                   slice_dims=pattern['slice_dims'],
80
                                   core_dims=pattern['core_dims'])
81
        pattern2 = {'name': 'PROJECTION', 'slice_dims': (0,),
82
                   'core_dims': (1,2)}
83
        out_dataset[0].add_pattern(pattern2['name'],
84
                                   slice_dims=pattern['slice_dims'],
85
                                   core_dims=pattern['core_dims'])
86
        out_pData[0].plugin_data_setup(pattern['name'], self.get_max_frames())
87
        out_dataset[0].meta_data.set('rotation_angle', angles_meta_deg)
88
89
    def process_frames(self, data):
90
        image = data[0].astype(np.float32)
91
        image = np.where(np.isfinite(image), image, 0)
92
        objsize_image = np.shape(image)[0]
93
        RectoolsDIR = RecToolsDIR(DetectorsDimH = self.detectors_horiz,  # DetectorsDimH # detector dimension (horizontal)
94
                            DetectorsDimV = None,  # DetectorsDimV # detector dimension (vertical) for 3D case only
95
                            CenterRotOffset = -self.cor+self.det_horiz_half-0.5, # Center of Rotation (CoR) scalar
96
                            AnglesVec = self.angles_rad, # array of angles in radians
97
                            ObjSize = objsize_image, # a scalar to define reconstructed object dimensions
98
                            device_projector='gpu')
99
        sinogram_new = RectoolsDIR.FORWPROJ(image)
100
        return sinogram_new
101
102
    def new_shape(self, full_shape, data):
103
        # calculate a new output data shape based on the input data shape
104
        new_shape_sino_orig = list(full_shape)
105
        new_shape_sino= (self.angles_total, new_shape_sino_orig[1], self.detectors_horiz)
106
        return tuple(new_shape_sino)
107
108
    def get_max_frames(self):
109
        return 'single'
110
111
    def nInput_datasets(self):
112
        return 1
113
114
    def nOutput_datasets(self):
115
        return 1
116

savu/plugins/reconstructions/projectors/forward_projector_cpu.py 1 location

@@ 30-115 (lines=86) @@
27
from tomobar.methodsDIR import RecToolsDIR
28
import numpy as np
29
30
@register_plugin
31
class ForwardProjectorCpu(Plugin, CpuPlugin):
32
33
    def __init__(self):
34
        super(ForwardProjectorCpu, self).__init__('ForwardProjectorCpu')
35
36
    def pre_process(self):
37
        #getting metadata
38
        in_meta_data = self.get_in_meta_data()[0]
39
        self.cor = in_meta_data.get('centre_of_rotation')
40
        self.cor=self.cor[0]
41
42
    def setup(self):
43
        in_dataset, out_dataset = self.get_datasets()
44
        in_pData, out_pData = self.get_plugin_datasets()
45
        in_pData[0].plugin_data_setup('VOLUME_XZ', 'single')
46
47
        if (self.parameters['angles_deg'] is None):
48
            # data extracted geometry parameters
49
            in_meta_data=self.get_in_meta_data()[0]
50
            angles_meta_deg = in_meta_data.get('rotation_angle')
51
            self.angles_rad = np.deg2rad(angles_meta_deg)
52
            self.detectors_horiz = in_meta_data.get('detector_x_length')
53
        else:
54
            # user-set parameters
55
            angles_list=self.parameters['angles_deg']
56
            self.cor=self.parameters['centre_of_rotation']
57
            self.angles_rad = np.deg2rad(np.linspace(angles_list[0], angles_list[1], angles_list[2], dtype=np.float))
58
            self.detectors_horiz = self.parameters['det_horiz']
59
60
        self.det_horiz_half=0.5*self.detectors_horiz
61
        self.angles_total = len(self.angles_rad)
62
63
        out_shape_sino = self.new_shape(in_dataset[0].get_shape(), in_dataset[0])
64
        labels = ['rotation_angle.degrees', 'detector_y.pixel', 'detector_x.pixel']
65
        pattern = {'name': 'SINOGRAM', 'slice_dims': (1,),
66
                   'core_dims': (2,0)}
67
        out_dataset[0].create_dataset(axis_labels=labels, shape=out_shape_sino)
68
        out_dataset[0].add_pattern(pattern['name'],
69
                                   slice_dims=pattern['slice_dims'],
70
                                   core_dims=pattern['core_dims'])
71
        pattern2 = {'name': 'PROJECTION', 'slice_dims': (0,),
72
                   'core_dims': (1,2)}
73
        out_dataset[0].add_pattern(pattern2['name'],
74
                                   slice_dims=pattern['slice_dims'],
75
                                   core_dims=pattern['core_dims'])
76
        out_pData[0].plugin_data_setup(pattern['name'], self.get_max_frames())
77
        out_dataset[0].meta_data.set('rotation_angle', angles_meta_deg)
78
79
    def process_frames(self, data):
80
        image = data[0].astype(np.float32)
81
        image = np.where(np.isfinite(image), image, 0)
82
        objsize_image = np.shape(image)[0]
83
        RectoolsDIR = RecToolsDIR(DetectorsDimH = self.detectors_horiz,  # DetectorsDimH # detector dimension (horizontal)
84
                            DetectorsDimV = None,  # DetectorsDimV # detector dimension (vertical) for 3D case only
85
                            CenterRotOffset = -self.cor+self.det_horiz_half-0.5, # Center of Rotation (CoR) scalar
86
                            AnglesVec = self.angles_rad, # array of angles in radians
87
                            ObjSize = objsize_image, # a scalar to define reconstructed object dimensions
88
                            device_projector='cpu')
89
        sinogram_new = RectoolsDIR.FORWPROJ(image)
90
        return sinogram_new
91
92
    def new_shape(self, full_shape, data):
93
        # calculate a new output data shape based on the input data shape
94
        new_shape_sino_orig = list(full_shape)
95
        new_shape_sino= (self.angles_total, new_shape_sino_orig[1], self.detectors_horiz)
96
        return tuple(new_shape_sino)
97
98
    def get_max_frames(self):
99
        return 'single'
100
101
    def nInput_datasets(self):
102
        return 1
103
104
    def nOutput_datasets(self):
105
        return 1
106