DeepRegNet /
DeepReg
| 1 | # coding=utf-8 |
||
| 2 | |||
| 3 | """ |
||
| 4 | Module to train a network using init files and a CLI. |
||
| 5 | """ |
||
| 6 | |||
| 7 | import argparse |
||
| 8 | import os |
||
| 9 | from typing import Dict, List, Tuple, Union |
||
| 10 | |||
| 11 | import tensorflow as tf |
||
| 12 | |||
| 13 | import deepreg.config.parser as config_parser |
||
| 14 | import deepreg.model.optimizer as opt |
||
| 15 | from deepreg import log |
||
| 16 | from deepreg.callback import build_checkpoint_callback |
||
| 17 | from deepreg.registry import REGISTRY |
||
| 18 | from deepreg.util import build_dataset, build_log_dir |
||
| 19 | |||
| 20 | logger = log.get(__name__) |
||
| 21 | |||
| 22 | |||
| 23 | def build_config( |
||
| 24 | config_path: Union[str, List[str]], |
||
| 25 | log_dir: str, |
||
| 26 | exp_name: str, |
||
| 27 | ckpt_path: str, |
||
| 28 | max_epochs: int = -1, |
||
| 29 | ) -> Tuple[Dict, str, str]: |
||
| 30 | """ |
||
| 31 | Function to initialise log directories, |
||
| 32 | assert that checkpointed model is the right |
||
| 33 | type and to parse the configuration for training. |
||
| 34 | |||
| 35 | :param config_path: list of str, path to config file |
||
| 36 | :param log_dir: path of the log directory |
||
| 37 | :param exp_name: name of the experiment |
||
| 38 | :param ckpt_path: path where model is stored. |
||
| 39 | :param max_epochs: if max_epochs > 0, use it to overwrite the configuration |
||
| 40 | :return: - config: a dictionary saving configuration |
||
| 41 | - exp_name: the path of directory to save logs |
||
| 42 | """ |
||
| 43 | |||
| 44 | # init log directory |
||
| 45 | log_dir = build_log_dir(log_dir=log_dir, exp_name=exp_name) |
||
| 46 | |||
| 47 | # load config |
||
| 48 | config = config_parser.load_configs(config_path) |
||
| 49 | |||
| 50 | # replace the ~ with user home path |
||
| 51 | ckpt_path = os.path.expanduser(ckpt_path) |
||
| 52 | |||
| 53 | # overwrite epochs and save_period if necessary |
||
| 54 | if max_epochs > 0: |
||
| 55 | config["train"]["epochs"] = max_epochs |
||
| 56 | config["train"]["save_period"] = min(max_epochs, config["train"]["save_period"]) |
||
| 57 | |||
| 58 | # backup config |
||
| 59 | config_parser.save(config=config, out_dir=log_dir) |
||
| 60 | |||
| 61 | return config, log_dir, ckpt_path |
||
| 62 | |||
| 63 | |||
| 64 | def train( |
||
| 65 | gpu: str, |
||
| 66 | config_path: Union[str, List[str]], |
||
| 67 | ckpt_path: str, |
||
| 68 | num_workers: int = 1, |
||
| 69 | gpu_allow_growth: bool = True, |
||
| 70 | exp_name: str = "", |
||
| 71 | log_dir: str = "logs", |
||
| 72 | max_epochs: int = -1, |
||
| 73 | ): |
||
| 74 | """ |
||
| 75 | Function to train a model. |
||
| 76 | |||
| 77 | :param gpu: which local gpu to use to train. |
||
| 78 | :param config_path: path to configuration set up. |
||
| 79 | :param ckpt_path: where to store training checkpoints. |
||
| 80 | :param num_workers: number of cpu cores to be used, <=0 means not limited. |
||
| 81 | :param gpu_allow_growth: whether to allocate whole GPU memory for training. |
||
| 82 | :param log_dir: path of the log directory. |
||
| 83 | :param exp_name: experiment name. |
||
| 84 | :param max_epochs: if max_epochs > 0, will use it to overwrite the configuration. |
||
| 85 | """ |
||
| 86 | # set env variables |
||
| 87 | if gpu is not None: |
||
| 88 | os.environ["CUDA_VISIBLE_DEVICES"] = gpu |
||
| 89 | os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = ( |
||
| 90 | "true" if gpu_allow_growth else "false" |
||
| 91 | ) |
||
| 92 | View Code Duplication | if num_workers <= 0: # pragma: no cover |
|
|
0 ignored issues
–
show
Duplication
introduced
by
Loading history...
|
|||
| 93 | logger.info( |
||
| 94 | "Limiting CPU usage by setting environment variables " |
||
| 95 | "OMP_NUM_THREADS, TF_NUM_INTRAOP_THREADS, TF_NUM_INTEROP_THREADS to %d. " |
||
| 96 | "This may slow down the training. " |
||
| 97 | "Please use --num_workers flag to modify the behavior. " |
||
| 98 | "Setting to 0 or negative values will remove the limitation.", |
||
| 99 | num_workers, |
||
| 100 | ) |
||
| 101 | # limit CPU usage |
||
| 102 | # https://github.com/tensorflow/tensorflow/issues/29968#issuecomment-789604232 |
||
| 103 | os.environ["OMP_NUM_THREADS"] = str(num_workers) |
||
| 104 | os.environ["TF_NUM_INTRAOP_THREADS"] = str(num_workers) |
||
| 105 | os.environ["TF_NUM_INTEROP_THREADS"] = str(num_workers) |
||
| 106 | |||
| 107 | # load config |
||
| 108 | config, log_dir, ckpt_path = build_config( |
||
| 109 | config_path=config_path, |
||
| 110 | log_dir=log_dir, |
||
| 111 | exp_name=exp_name, |
||
| 112 | ckpt_path=ckpt_path, |
||
| 113 | max_epochs=max_epochs, |
||
| 114 | ) |
||
| 115 | |||
| 116 | # build dataset |
||
| 117 | data_loader_train, dataset_train, steps_per_epoch_train = build_dataset( |
||
| 118 | dataset_config=config["dataset"], |
||
| 119 | preprocess_config=config["train"]["preprocess"], |
||
| 120 | split="train", |
||
| 121 | training=True, |
||
| 122 | repeat=True, |
||
| 123 | ) |
||
| 124 | assert data_loader_train is not None # train data should not be None |
||
| 125 | data_loader_val, dataset_val, steps_per_epoch_val = build_dataset( |
||
| 126 | dataset_config=config["dataset"], |
||
| 127 | preprocess_config=config["train"]["preprocess"], |
||
| 128 | split="valid", |
||
| 129 | training=False, |
||
| 130 | repeat=True, |
||
| 131 | ) |
||
| 132 | |||
| 133 | # use strategy to support multiple GPUs |
||
| 134 | # the network is mirrored in each GPU so that we can use larger batch size |
||
| 135 | # https://www.tensorflow.org/guide/distributed_training |
||
| 136 | # only model, optimizer and metrics need to be defined inside the strategy |
||
| 137 | num_devices = max(len(tf.config.list_physical_devices("GPU")), 1) |
||
| 138 | batch_size = config["train"]["preprocess"]["batch_size"] |
||
| 139 | if num_devices > 1: # pragma: no cover |
||
| 140 | strategy = tf.distribute.MirroredStrategy() |
||
| 141 | if batch_size % num_devices != 0: |
||
| 142 | raise ValueError( |
||
| 143 | f"batch size {batch_size} can not be divided evenly " |
||
| 144 | f"by the number of devices." |
||
| 145 | ) |
||
| 146 | else: |
||
| 147 | strategy = tf.distribute.get_strategy() |
||
| 148 | with strategy.scope(): |
||
| 149 | model: tf.keras.Model = REGISTRY.build_model( |
||
| 150 | config=dict( |
||
| 151 | name=config["train"]["method"], |
||
| 152 | moving_image_size=data_loader_train.moving_image_shape, |
||
| 153 | fixed_image_size=data_loader_train.fixed_image_shape, |
||
| 154 | index_size=data_loader_train.num_indices, |
||
| 155 | labeled=config["dataset"]["train"]["labeled"], |
||
| 156 | batch_size=batch_size, |
||
| 157 | config=config["train"], |
||
| 158 | ) |
||
| 159 | ) |
||
| 160 | optimizer = opt.build_optimizer(optimizer_config=config["train"]["optimizer"]) |
||
| 161 | model.compile(optimizer=optimizer) |
||
| 162 | model.plot_model(output_dir=log_dir) |
||
| 163 | |||
| 164 | # build callbacks |
||
| 165 | tensorboard_callback = tf.keras.callbacks.TensorBoard( |
||
| 166 | log_dir=log_dir, |
||
| 167 | histogram_freq=config["train"]["save_period"], |
||
| 168 | update_freq=config["train"].get("update_freq", "epoch"), |
||
| 169 | ) |
||
| 170 | ckpt_callback, initial_epoch = build_checkpoint_callback( |
||
| 171 | model=model, |
||
| 172 | dataset=dataset_train, |
||
| 173 | log_dir=log_dir, |
||
| 174 | save_period=config["train"]["save_period"], |
||
| 175 | ckpt_path=ckpt_path, |
||
| 176 | ) |
||
| 177 | callbacks = [tensorboard_callback, ckpt_callback] |
||
| 178 | |||
| 179 | # train |
||
| 180 | # it's necessary to define the steps_per_epoch |
||
| 181 | # and validation_steps to prevent errors like |
||
| 182 | # BaseCollectiveExecutor::StartAbort Out of range: End of sequence |
||
| 183 | model.fit( |
||
| 184 | x=dataset_train, |
||
| 185 | steps_per_epoch=steps_per_epoch_train, |
||
| 186 | initial_epoch=initial_epoch, |
||
| 187 | epochs=config["train"]["epochs"], |
||
| 188 | validation_data=dataset_val, |
||
| 189 | validation_steps=steps_per_epoch_val, |
||
| 190 | callbacks=callbacks, |
||
| 191 | ) |
||
| 192 | |||
| 193 | # close file loaders in data loaders after training |
||
| 194 | data_loader_train.close() |
||
| 195 | if data_loader_val is not None: |
||
| 196 | data_loader_val.close() |
||
| 197 | |||
| 198 | |||
| 199 | def main(args=None): |
||
| 200 | """ |
||
| 201 | Entry point for train script. |
||
| 202 | |||
| 203 | :param args: arguments |
||
| 204 | """ |
||
| 205 | |||
| 206 | parser = argparse.ArgumentParser() |
||
| 207 | |||
| 208 | parser.add_argument( |
||
| 209 | "--gpu", |
||
| 210 | "-g", |
||
| 211 | help="GPU index for training." |
||
| 212 | "-g for using GPU remotely" |
||
| 213 | '-g "" for using CPU' |
||
| 214 | '-g "0" for using GPU 0' |
||
| 215 | '-g "0,1" for using GPU 0 and 1.', |
||
| 216 | type=str, |
||
| 217 | required=False, |
||
| 218 | ) |
||
| 219 | |||
| 220 | parser.add_argument( |
||
| 221 | "--gpu_allow_growth", |
||
| 222 | "-gr", |
||
| 223 | help="Prevent TensorFlow from reserving all available GPU memory", |
||
| 224 | default=False, |
||
| 225 | ) |
||
| 226 | |||
| 227 | parser.add_argument( |
||
| 228 | "--num_workers", |
||
| 229 | help="Number of CPUs to be used, <= 0 means unlimited.", |
||
| 230 | type=int, |
||
| 231 | default=1, |
||
| 232 | ) |
||
| 233 | |||
| 234 | parser.add_argument( |
||
| 235 | "--ckpt_path", |
||
| 236 | "-k", |
||
| 237 | help="Path of the saved model checkpoint to load." |
||
| 238 | "No need to provide if start training from scratch.", |
||
| 239 | default="", |
||
| 240 | type=str, |
||
| 241 | required=False, |
||
| 242 | ) |
||
| 243 | |||
| 244 | parser.add_argument( |
||
| 245 | "--log_dir", help="Path of log directory.", default="logs", type=str |
||
| 246 | ) |
||
| 247 | |||
| 248 | parser.add_argument( |
||
| 249 | "--exp_name", |
||
| 250 | "-l", |
||
| 251 | help="Name of log directory." |
||
| 252 | "The directory is under log root, e.g. logs/ by default." |
||
| 253 | "If not provided, a timestamp based folder will be created.", |
||
| 254 | default="", |
||
| 255 | type=str, |
||
| 256 | ) |
||
| 257 | |||
| 258 | parser.add_argument( |
||
| 259 | "--config_path", |
||
| 260 | "-c", |
||
| 261 | help="Path of config, must end with .yaml. Can pass multiple paths.", |
||
| 262 | type=str, |
||
| 263 | nargs="+", |
||
| 264 | required=True, |
||
| 265 | ) |
||
| 266 | |||
| 267 | parser.add_argument( |
||
| 268 | "--max_epochs", |
||
| 269 | help="The maximum number of epochs, -1 means following configuration.", |
||
| 270 | type=int, |
||
| 271 | default=-1, |
||
| 272 | ) |
||
| 273 | |||
| 274 | args = parser.parse_args(args) |
||
| 275 | train( |
||
| 276 | gpu=args.gpu, |
||
| 277 | config_path=args.config_path, |
||
| 278 | num_workers=args.num_workers, |
||
| 279 | gpu_allow_growth=args.gpu_allow_growth, |
||
| 280 | ckpt_path=args.ckpt_path, |
||
| 281 | log_dir=args.log_dir, |
||
| 282 | exp_name=args.exp_name, |
||
| 283 | max_epochs=args.max_epochs, |
||
| 284 | ) |
||
| 285 | |||
| 286 | |||
| 287 | if __name__ == "__main__": |
||
| 288 | main() # pragma: no cover |
||
| 289 |