1
|
|
|
# coding=utf-8 |
|
|
|
|
2
|
|
|
|
3
|
|
|
|
4
|
|
|
from abc import abstractmethod |
5
|
|
|
from typing import List, Tuple, Union |
6
|
|
|
|
7
|
|
|
import tensorflow as tf |
8
|
|
|
import tensorflow.keras.layers as tfkl |
9
|
|
|
from tensorflow.python.keras.utils import conv_utils |
10
|
|
|
|
11
|
|
|
from deepreg.model import layer, layer_util |
12
|
|
|
from deepreg.model.backbone.interface import Backbone |
13
|
|
|
from deepreg.registry import REGISTRY |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
class AbstractUNet(Backbone): |
17
|
|
|
"""An interface for u-net style backbones.""" |
18
|
|
|
|
19
|
|
|
def __init__( |
|
|
|
|
20
|
|
|
self, |
21
|
|
|
image_size: tuple, |
22
|
|
|
num_channel_initial: int, |
23
|
|
|
depth: int, |
24
|
|
|
extract_levels: List[int], |
25
|
|
|
out_kernel_initializer: str, |
26
|
|
|
out_activation: str, |
27
|
|
|
out_channels: int, |
28
|
|
|
name: str = "AbstractUNet", |
29
|
|
|
**kwargs, |
30
|
|
|
): |
31
|
|
|
""" |
32
|
|
|
Init. |
33
|
|
|
|
34
|
|
|
Image is encoded gradually, i from level 0 to D, |
35
|
|
|
then it is decoded gradually, j from level D to 0. |
36
|
|
|
Some of the decoded levels are used for generating extractions. |
37
|
|
|
|
38
|
|
|
So, extract_levels are between [0, D]. |
39
|
|
|
|
40
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
41
|
|
|
:param num_channel_initial: number of initial channels. |
42
|
|
|
:param depth: d = 0 to depth, both side included |
43
|
|
|
:param extract_levels: from which depths the output will be built. |
44
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
45
|
|
|
:param out_activation: activation to use at end layer. |
46
|
|
|
:param out_channels: number of channels for the extractions |
47
|
|
|
:param use_additive_upsampling: whether use additive up-sampling. |
48
|
|
|
:param name: name of the backbone. |
49
|
|
|
:param kwargs: additional arguments. |
50
|
|
|
""" |
51
|
|
|
super().__init__( |
52
|
|
|
image_size=image_size, |
53
|
|
|
out_channels=out_channels, |
54
|
|
|
num_channel_initial=num_channel_initial, |
55
|
|
|
out_kernel_initializer=out_kernel_initializer, |
56
|
|
|
out_activation=out_activation, |
57
|
|
|
name=name, |
58
|
|
|
**kwargs, |
59
|
|
|
) |
60
|
|
|
|
61
|
|
|
# save parameters |
62
|
|
|
assert max(extract_levels) <= depth |
63
|
|
|
self._extract_levels = extract_levels |
64
|
|
|
self._depth = depth |
65
|
|
|
|
66
|
|
|
# init layers |
67
|
|
|
# all lists start with d = 0 |
68
|
|
|
self._downsample_convs = None |
69
|
|
|
self._downsample_pools = None |
70
|
|
|
self._bottom_block = None |
71
|
|
|
self._upsample_deconvs = None |
72
|
|
|
self._upsample_convs = None |
73
|
|
|
self._output_block = None |
74
|
|
|
|
75
|
|
|
def build_layers( |
76
|
|
|
self, |
77
|
|
|
image_size: tuple, |
78
|
|
|
num_channel_initial: int, |
79
|
|
|
depth: int, |
80
|
|
|
extract_levels: List[int], |
81
|
|
|
downsample_kernel_sizes: Union[int, List[int]], |
82
|
|
|
upsample_kernel_sizes: Union[int, List[int]], |
83
|
|
|
strides: int, |
84
|
|
|
padding: str, |
85
|
|
|
out_kernel_initializer: str, |
86
|
|
|
out_activation: str, |
87
|
|
|
out_channels: int, |
88
|
|
|
): |
89
|
|
|
""" |
90
|
|
|
Build layers that will be used in call. |
91
|
|
|
|
92
|
|
|
:param image_size: (dim1, dim2, dim3). |
93
|
|
|
:param num_channel_initial: number of initial channels. |
94
|
|
|
:param depth: network starts with d = 0, and the bottom has d = depth. |
95
|
|
|
:param extract_levels: from which depths the output will be built. |
96
|
|
|
:param downsample_kernel_sizes: kernel size for down-sampling |
97
|
|
|
:param upsample_kernel_sizes: kernel size for up-sampling |
98
|
|
|
:param strides: strides for down-sampling |
99
|
|
|
:param padding: padding mode for all conv layers |
100
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
101
|
|
|
:param out_activation: activation to use at end layer. |
102
|
|
|
:param out_channels: number of channels for the extractions |
103
|
|
|
""" |
104
|
|
|
# init params |
105
|
|
|
min_extract_level = min(extract_levels) |
106
|
|
|
num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)] |
107
|
|
|
if isinstance(downsample_kernel_sizes, int): |
108
|
|
|
downsample_kernel_sizes = [downsample_kernel_sizes] * (depth + 1) |
109
|
|
|
assert len(downsample_kernel_sizes) == depth + 1 |
110
|
|
|
if isinstance(upsample_kernel_sizes, int): |
111
|
|
|
upsample_kernel_sizes = [upsample_kernel_sizes] * depth |
112
|
|
|
assert len(upsample_kernel_sizes) == depth |
113
|
|
|
|
114
|
|
|
# down-sampling |
115
|
|
|
self._downsample_convs = [] |
116
|
|
|
self._downsample_pools = [] |
117
|
|
|
tensor_shape = image_size |
118
|
|
|
tensor_shapes = [tensor_shape] |
119
|
|
|
for d in range(depth): |
120
|
|
|
downsample_conv = self.build_conv_block( |
121
|
|
|
filters=num_channels[d], |
122
|
|
|
kernel_size=downsample_kernel_sizes[d], |
123
|
|
|
padding=padding, |
124
|
|
|
) |
125
|
|
|
downsample_pool = self.build_down_sampling_block( |
126
|
|
|
kernel_size=strides, strides=strides, padding=padding |
127
|
|
|
) |
128
|
|
|
tensor_shape = tuple( |
129
|
|
|
conv_utils.conv_output_length( |
130
|
|
|
input_length=x, |
131
|
|
|
filter_size=strides, |
132
|
|
|
padding=padding, |
133
|
|
|
stride=strides, |
134
|
|
|
dilation=1, |
135
|
|
|
) |
136
|
|
|
for x in tensor_shape |
137
|
|
|
) |
138
|
|
|
self._downsample_convs.append(downsample_conv) |
139
|
|
|
self._downsample_pools.append(downsample_pool) |
140
|
|
|
tensor_shapes.append(tensor_shape) |
141
|
|
|
|
142
|
|
|
# bottom layer |
143
|
|
|
self._bottom_block = self.build_bottom_block( |
144
|
|
|
filters=num_channels[depth], |
145
|
|
|
kernel_size=downsample_kernel_sizes[depth], |
146
|
|
|
padding=padding, |
147
|
|
|
) |
148
|
|
|
|
149
|
|
|
# up-sampling |
150
|
|
|
self._upsample_deconvs = [] |
151
|
|
|
self._upsample_convs = [] |
152
|
|
|
for d in range(depth - 1, min_extract_level - 1, -1): |
153
|
|
|
kernel_size = upsample_kernel_sizes[d] |
154
|
|
|
output_padding = layer_util.deconv_output_padding( |
155
|
|
|
input_shape=tensor_shapes[d + 1], |
156
|
|
|
output_shape=tensor_shapes[d], |
157
|
|
|
kernel_size=kernel_size, |
158
|
|
|
stride=strides, |
159
|
|
|
padding=padding, |
160
|
|
|
) |
161
|
|
|
upsample_deconv = self.build_up_sampling_block( |
162
|
|
|
filters=num_channels[d], |
163
|
|
|
output_padding=output_padding, |
164
|
|
|
kernel_size=kernel_size, |
165
|
|
|
strides=strides, |
166
|
|
|
padding=padding, |
167
|
|
|
output_shape=tensor_shapes[d], |
168
|
|
|
) |
169
|
|
|
upsample_conv = self.build_conv_block( |
170
|
|
|
filters=num_channels[d], kernel_size=kernel_size, padding=padding |
171
|
|
|
) |
172
|
|
|
self._upsample_deconvs = [upsample_deconv] + self._upsample_deconvs |
173
|
|
|
self._upsample_convs = [upsample_conv] + self._upsample_convs |
174
|
|
|
if min_extract_level > 0: |
175
|
|
|
# add Nones to make lists have length depth - 1 |
176
|
|
|
self._upsample_deconvs = [None] * min_extract_level + self._upsample_deconvs |
177
|
|
|
self._upsample_convs = [None] * min_extract_level + self._upsample_convs |
178
|
|
|
|
179
|
|
|
# extraction |
180
|
|
|
self._output_block = self.build_output_block( |
181
|
|
|
image_size=image_size, |
182
|
|
|
extract_levels=extract_levels, |
183
|
|
|
out_channels=out_channels, |
184
|
|
|
out_kernel_initializer=out_kernel_initializer, |
185
|
|
|
out_activation=out_activation, |
186
|
|
|
) |
187
|
|
|
|
188
|
|
|
@abstractmethod |
189
|
|
|
def build_conv_block( |
190
|
|
|
self, filters: int, kernel_size: int, padding: str |
191
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
192
|
|
|
""" |
193
|
|
|
Build a conv block for down-sampling or up-sampling. |
194
|
|
|
|
195
|
|
|
This block do not change the tensor shape (width, height, depth), |
196
|
|
|
it only changes the number of channels. |
197
|
|
|
|
198
|
|
|
:param filters: number of channels for output |
199
|
|
|
:param kernel_size: arg for conv3d |
200
|
|
|
:param padding: arg for conv3d |
201
|
|
|
:return: a block consists of one or multiple layers |
202
|
|
|
""" |
203
|
|
|
|
204
|
|
|
@abstractmethod |
205
|
|
|
def build_down_sampling_block( |
206
|
|
|
self, kernel_size: int, padding: str, strides: int |
207
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
208
|
|
|
""" |
209
|
|
|
Build a block for down-sampling. |
210
|
|
|
|
211
|
|
|
This block changes the tensor shape (width, height, depth), |
212
|
|
|
but it does not changes the number of channels. |
213
|
|
|
|
214
|
|
|
:param kernel_size: arg for pool3d |
215
|
|
|
:param padding: arg for pool3d |
216
|
|
|
:param strides: arg for pool3d |
217
|
|
|
:return: a block consists of one or multiple layers |
218
|
|
|
""" |
219
|
|
|
|
220
|
|
|
@abstractmethod |
221
|
|
|
def build_bottom_block( |
222
|
|
|
self, filters: int, kernel_size: int, padding: str |
223
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
224
|
|
|
""" |
225
|
|
|
Build a block for bottom layer. |
226
|
|
|
|
227
|
|
|
This block do not change the tensor shape (width, height, depth), |
228
|
|
|
it only changes the number of channels. |
229
|
|
|
|
230
|
|
|
:param filters: number of channels for output |
231
|
|
|
:param kernel_size: arg for conv3d |
232
|
|
|
:param padding: arg for conv3d |
233
|
|
|
:return: a block consists of one or multiple layers |
234
|
|
|
""" |
235
|
|
|
|
236
|
|
|
@abstractmethod |
237
|
|
|
def build_up_sampling_block( |
238
|
|
|
self, |
239
|
|
|
filters: int, |
240
|
|
|
output_padding: int, |
241
|
|
|
kernel_size: int, |
242
|
|
|
padding: str, |
243
|
|
|
strides: int, |
244
|
|
|
output_shape: tuple, |
245
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
246
|
|
|
""" |
247
|
|
|
Build a block for up-sampling. |
248
|
|
|
|
249
|
|
|
This block changes the tensor shape (width, height, depth), |
250
|
|
|
but it does not changes the number of channels. |
251
|
|
|
|
252
|
|
|
:param filters: number of channels for output |
253
|
|
|
:param output_padding: padding for output |
254
|
|
|
:param kernel_size: arg for deconv3d |
255
|
|
|
:param padding: arg for deconv3d |
256
|
|
|
:param strides: arg for deconv3d |
257
|
|
|
:param output_shape: shape of the output tensor |
258
|
|
|
:return: a block consists of one or multiple layers |
259
|
|
|
""" |
260
|
|
|
|
261
|
|
|
@abstractmethod |
262
|
|
|
def build_skip_block(self) -> Union[tf.keras.Model, tfkl.Layer]: |
263
|
|
|
""" |
264
|
|
|
Build a block for combining skipped tensor and up-sampled one. |
265
|
|
|
|
266
|
|
|
This block do not change the tensor shape (width, height, depth), |
267
|
|
|
it only changes the number of channels. |
268
|
|
|
|
269
|
|
|
The input to this block is a list of tensors. |
270
|
|
|
|
271
|
|
|
:return: a block consists of one or multiple layers |
272
|
|
|
""" |
273
|
|
|
|
274
|
|
|
@abstractmethod |
275
|
|
|
def build_output_block( |
276
|
|
|
self, |
277
|
|
|
image_size: Tuple[int], |
278
|
|
|
extract_levels: List[int], |
279
|
|
|
out_channels: int, |
280
|
|
|
out_kernel_initializer: str, |
281
|
|
|
out_activation: str, |
282
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
283
|
|
|
""" |
284
|
|
|
Build a block for output. |
285
|
|
|
|
286
|
|
|
The input to this block is a list of tensors. |
287
|
|
|
|
288
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
289
|
|
|
:param extract_levels: number of extraction levels. |
290
|
|
|
:param out_channels: number of channels for the extractions |
291
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
292
|
|
|
:param out_activation: activation to use at end layer. |
293
|
|
|
:return: a block consists of one or multiple layers |
294
|
|
|
""" |
295
|
|
|
|
296
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
297
|
|
|
""" |
298
|
|
|
Build LocalNet graph based on built layers. |
299
|
|
|
|
300
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
301
|
|
|
:param training: None or bool. |
302
|
|
|
:param mask: None or tf.Tensor. |
303
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
304
|
|
|
""" |
305
|
|
|
|
306
|
|
|
# down-sampling |
307
|
|
|
skips = [] |
308
|
|
|
down_sampled = inputs |
309
|
|
|
for d in range(self._depth): |
310
|
|
|
skip = self._downsample_convs[d](inputs=down_sampled, training=training) |
311
|
|
|
down_sampled = self._downsample_pools[d](inputs=skip, training=training) |
312
|
|
|
skips.append(skip) |
313
|
|
|
|
314
|
|
|
# bottom |
315
|
|
|
up_sampled = self._bottom_block(inputs=down_sampled, training=training) |
316
|
|
|
|
317
|
|
|
# up-sampling |
318
|
|
|
outs = [up_sampled] |
319
|
|
|
for d in range(self._depth - 1, min(self._extract_levels) - 1, -1): |
320
|
|
|
up_sampled = self._upsample_deconvs[d](inputs=up_sampled, training=training) |
321
|
|
|
up_sampled = self.build_skip_block()([up_sampled, skips[d]]) |
322
|
|
|
up_sampled = self._upsample_convs[d](inputs=up_sampled, training=training) |
323
|
|
|
outs.append(up_sampled) |
324
|
|
|
|
325
|
|
|
# output |
326
|
|
|
output = self._output_block(outs) |
327
|
|
|
|
328
|
|
|
return output |
329
|
|
|
|
330
|
|
|
|
331
|
|
|
@REGISTRY.register_backbone(name="unet") |
332
|
|
|
class UNet(Backbone): |
333
|
|
|
""" |
334
|
|
|
Class that implements an adapted 3D UNet. |
335
|
|
|
|
336
|
|
|
Reference: |
337
|
|
|
|
338
|
|
|
- O. Ronneberger, P. Fischer, and T. Brox, |
339
|
|
|
“U-net: Convolutional networks for biomedical image segmentation,”, |
340
|
|
|
Lecture Notes in Computer Science, 2015, vol. 9351, pp. 234–241. |
341
|
|
|
https://arxiv.org/abs/1505.04597 |
342
|
|
|
""" |
343
|
|
|
|
344
|
|
|
def __init__( |
345
|
|
|
self, |
346
|
|
|
image_size: tuple, |
347
|
|
|
out_channels: int, |
348
|
|
|
num_channel_initial: int, |
349
|
|
|
depth: int, |
350
|
|
|
out_kernel_initializer: str, |
351
|
|
|
out_activation: str, |
352
|
|
|
pooling: bool = True, |
353
|
|
|
concat_skip: bool = False, |
354
|
|
|
name: str = "Unet", |
355
|
|
|
**kwargs, |
356
|
|
|
): |
357
|
|
|
""" |
358
|
|
|
Initialise UNet. |
359
|
|
|
|
360
|
|
|
:param image_size: (dim1, dim2, dim3), dims of input image. |
361
|
|
|
:param out_channels: number of channels for the output |
362
|
|
|
:param num_channel_initial: number of initial channels |
363
|
|
|
:param depth: input is at level 0, bottom is at level depth |
364
|
|
|
:param out_kernel_initializer: kernel initializer for the last layer |
365
|
|
|
:param out_activation: activation at the last layer |
366
|
|
|
:param pooling: for downsampling, use non-parameterized |
367
|
|
|
pooling if true, otherwise use conv3d |
368
|
|
|
:param concat_skip: when upsampling, concatenate skipped |
369
|
|
|
tensor if true, otherwise use addition |
370
|
|
|
:param name: name of the backbone. |
371
|
|
|
:param kwargs: additional arguments. |
372
|
|
|
""" |
373
|
|
|
super().__init__( |
374
|
|
|
image_size=image_size, |
375
|
|
|
out_channels=out_channels, |
376
|
|
|
num_channel_initial=num_channel_initial, |
377
|
|
|
out_kernel_initializer=out_kernel_initializer, |
378
|
|
|
out_activation=out_activation, |
379
|
|
|
name=name, |
380
|
|
|
**kwargs, |
381
|
|
|
) |
382
|
|
|
|
383
|
|
|
# init layer variables |
384
|
|
|
num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)] |
385
|
|
|
|
386
|
|
|
self._num_channel_initial = num_channel_initial |
387
|
|
|
self._depth = depth |
388
|
|
|
self._concat_skip = concat_skip |
389
|
|
|
self._downsample_convs = [] |
390
|
|
|
self._downsample_pools = [] |
391
|
|
|
tensor_shape = image_size |
392
|
|
|
self._tensor_shapes = [tensor_shape] |
393
|
|
|
for d in range(depth): |
394
|
|
|
downsample_conv = tf.keras.Sequential( |
395
|
|
|
[ |
396
|
|
|
layer.Conv3dBlock( |
397
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
398
|
|
|
), |
399
|
|
|
layer.ResidualConv3dBlock( |
400
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
401
|
|
|
), |
402
|
|
|
] |
403
|
|
|
) |
404
|
|
|
if pooling: |
405
|
|
|
downsample_pool = tfkl.MaxPool3D(pool_size=2, strides=2, padding="same") |
406
|
|
|
else: |
407
|
|
|
downsample_pool = layer.Conv3dBlock( |
408
|
|
|
filters=num_channels[d], kernel_size=3, strides=2, padding="same" |
409
|
|
|
) |
410
|
|
|
tensor_shape = tuple((x + 1) // 2 for x in tensor_shape) |
411
|
|
|
self._downsample_convs.append(downsample_conv) |
412
|
|
|
self._downsample_pools.append(downsample_pool) |
413
|
|
|
self._tensor_shapes.append(tensor_shape) |
414
|
|
|
self._bottom_conv3d = layer.Conv3dBlock( |
415
|
|
|
filters=num_channels[depth], kernel_size=3, padding="same" |
416
|
|
|
) |
417
|
|
|
self._bottom_res3d = layer.ResidualConv3dBlock( |
418
|
|
|
filters=num_channels[depth], kernel_size=3, padding="same" |
419
|
|
|
) |
420
|
|
|
self._upsample_deconvs = [] |
421
|
|
|
self._upsample_convs = [] |
422
|
|
|
for d in range(depth): |
423
|
|
|
padding = layer_util.deconv_output_padding( |
424
|
|
|
input_shape=self._tensor_shapes[d + 1], |
425
|
|
|
output_shape=self._tensor_shapes[d], |
426
|
|
|
kernel_size=3, |
427
|
|
|
stride=2, |
428
|
|
|
padding="same", |
429
|
|
|
) |
430
|
|
|
upsample_deconv = layer.Deconv3dBlock( |
431
|
|
|
filters=num_channels[d], |
432
|
|
|
output_padding=padding, |
433
|
|
|
kernel_size=3, |
434
|
|
|
strides=2, |
435
|
|
|
padding="same", |
436
|
|
|
) |
437
|
|
|
upsample_conv = tf.keras.Sequential( |
438
|
|
|
[ |
439
|
|
|
layer.Conv3dBlock( |
440
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
441
|
|
|
), |
442
|
|
|
layer.ResidualConv3dBlock( |
443
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
444
|
|
|
), |
445
|
|
|
] |
446
|
|
|
) |
447
|
|
|
self._upsample_deconvs.append(upsample_deconv) |
448
|
|
|
self._upsample_convs.append(upsample_conv) |
449
|
|
|
self._output_conv3d = tf.keras.Sequential( |
450
|
|
|
[ |
451
|
|
|
tfkl.Conv3D( |
452
|
|
|
filters=out_channels, |
453
|
|
|
kernel_size=3, |
454
|
|
|
strides=1, |
455
|
|
|
padding="same", |
456
|
|
|
kernel_initializer=out_kernel_initializer, |
457
|
|
|
activation=out_activation, |
458
|
|
|
), |
459
|
|
|
layer.Resize3d(shape=image_size), |
460
|
|
|
] |
461
|
|
|
) |
462
|
|
|
|
463
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
464
|
|
|
""" |
465
|
|
|
Builds graph based on built layers. |
466
|
|
|
|
467
|
|
|
:param inputs: shape = [batch, f_dim1, f_dim2, f_dim3, in_channels] |
468
|
|
|
:param training: |
469
|
|
|
:param mask: |
470
|
|
|
:return: shape = [batch, f_dim1, f_dim2, f_dim3, out_channels] |
471
|
|
|
""" |
472
|
|
|
|
473
|
|
|
down_sampled = inputs |
474
|
|
|
|
475
|
|
|
# down sample |
476
|
|
|
skips = [] |
477
|
|
|
for d_var in range(self._depth): # level 0 to D-1 |
478
|
|
|
skip = self._downsample_convs[d_var](inputs=down_sampled, training=training) |
479
|
|
|
down_sampled = self._downsample_pools[d_var](inputs=skip, training=training) |
480
|
|
|
skips.append(skip) |
481
|
|
|
|
482
|
|
|
# bottom, level D |
483
|
|
|
up_sampled = self._bottom_res3d( |
484
|
|
|
inputs=self._bottom_conv3d(inputs=down_sampled, training=training), |
485
|
|
|
training=training, |
486
|
|
|
) |
487
|
|
|
|
488
|
|
|
# up sample, level D-1 to 0 |
489
|
|
|
for d_var in range(self._depth - 1, -1, -1): |
490
|
|
|
up_sampled = self._upsample_deconvs[d_var]( |
491
|
|
|
inputs=up_sampled, training=training |
492
|
|
|
) |
493
|
|
|
if self._concat_skip: |
494
|
|
|
up_sampled = tf.concat([up_sampled, skips[d_var]], axis=4) |
495
|
|
|
else: |
496
|
|
|
up_sampled = up_sampled + skips[d_var] |
497
|
|
|
up_sampled = self._upsample_convs[d_var]( |
498
|
|
|
inputs=up_sampled, training=training |
499
|
|
|
) |
500
|
|
|
|
501
|
|
|
# output |
502
|
|
|
output = self._output_conv3d(inputs=up_sampled, training=training) |
503
|
|
|
|
504
|
|
|
return output |
505
|
|
|
|