|
1
|
|
|
import logging |
|
2
|
|
|
import os |
|
3
|
|
|
from abc import abstractmethod |
|
4
|
|
|
from copy import deepcopy |
|
5
|
|
|
from typing import Dict, Optional, Tuple |
|
6
|
|
|
|
|
7
|
|
|
import tensorflow as tf |
|
8
|
|
|
|
|
9
|
|
|
from deepreg.loss.label import DiceScore, compute_centroid_distance |
|
10
|
|
|
from deepreg.model import layer, layer_util |
|
11
|
|
|
from deepreg.model.backbone import GlobalNet |
|
12
|
|
|
from deepreg.registry import REGISTRY |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
def dict_without(d: dict, key) -> dict: |
|
16
|
|
|
""" |
|
17
|
|
|
Return a copy of the given dict without a certain key. |
|
18
|
|
|
|
|
19
|
|
|
:param d: dict to be copied. |
|
20
|
|
|
:param key: key to be removed. |
|
21
|
|
|
:return: the copy without a key |
|
22
|
|
|
""" |
|
23
|
|
|
copied = deepcopy(d) |
|
24
|
|
|
copied.pop(key) |
|
25
|
|
|
return copied |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
|
class RegistrationModel(tf.keras.Model): |
|
29
|
|
|
"""Interface for registration model.""" |
|
30
|
|
|
|
|
31
|
|
|
def __init__( |
|
32
|
|
|
self, |
|
33
|
|
|
moving_image_size: tuple, |
|
34
|
|
|
fixed_image_size: tuple, |
|
35
|
|
|
index_size: int, |
|
36
|
|
|
labeled: bool, |
|
37
|
|
|
batch_size: int, |
|
38
|
|
|
config: dict, |
|
39
|
|
|
num_devices: int = 1, |
|
40
|
|
|
name: str = "RegistrationModel", |
|
41
|
|
|
): |
|
42
|
|
|
""" |
|
43
|
|
|
Init. |
|
44
|
|
|
|
|
45
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
|
46
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
|
47
|
|
|
:param index_size: number of indices for identify each sample |
|
48
|
|
|
:param labeled: if the data is labeled |
|
49
|
|
|
:param batch_size: size of mini-batch |
|
50
|
|
|
:param config: config for method, backbone, and loss. |
|
51
|
|
|
:param num_devices: number of GPU used, |
|
52
|
|
|
global_batch_size = batch_size*num_devices |
|
53
|
|
|
:param name: name of the model |
|
54
|
|
|
""" |
|
55
|
|
|
super().__init__(name=name) |
|
56
|
|
|
self.moving_image_size = moving_image_size |
|
57
|
|
|
self.fixed_image_size = fixed_image_size |
|
58
|
|
|
self.index_size = index_size |
|
59
|
|
|
self.labeled = labeled |
|
60
|
|
|
self.batch_size = batch_size |
|
61
|
|
|
self.config = config |
|
62
|
|
|
self.num_devices = num_devices |
|
63
|
|
|
self.global_batch_size = num_devices * batch_size |
|
64
|
|
|
|
|
65
|
|
|
self._inputs = None # save inputs of self._model as dict |
|
66
|
|
|
self._outputs = None # save outputs of self._model as dict |
|
67
|
|
|
|
|
68
|
|
|
self.grid_ref = layer_util.get_reference_grid(grid_size=fixed_image_size)[ |
|
69
|
|
|
None, ... |
|
70
|
|
|
] |
|
71
|
|
|
self._model: tf.keras.Model = self.build_model() |
|
72
|
|
|
self.build_loss() |
|
73
|
|
|
|
|
74
|
|
|
def get_config(self) -> dict: |
|
75
|
|
|
"""Return the config dictionary for recreating this class.""" |
|
76
|
|
|
return dict( |
|
77
|
|
|
moving_image_size=self.moving_image_size, |
|
78
|
|
|
fixed_image_size=self.fixed_image_size, |
|
79
|
|
|
index_size=self.index_size, |
|
80
|
|
|
labeled=self.labeled, |
|
81
|
|
|
batch_size=self.batch_size, |
|
82
|
|
|
config=self.config, |
|
83
|
|
|
num_devices=self.num_devices, |
|
84
|
|
|
name=self.name, |
|
85
|
|
|
) |
|
86
|
|
|
|
|
87
|
|
|
@abstractmethod |
|
88
|
|
|
def build_model(self): |
|
89
|
|
|
"""Build the model to be saved as self._model.""" |
|
90
|
|
|
|
|
91
|
|
|
def build_inputs(self) -> Dict[str, tf.keras.layers.Input]: |
|
92
|
|
|
""" |
|
93
|
|
|
Build input tensors. |
|
94
|
|
|
|
|
95
|
|
|
:return: dict of inputs. |
|
96
|
|
|
""" |
|
97
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
|
98
|
|
|
moving_image = tf.keras.Input( |
|
99
|
|
|
shape=self.moving_image_size, |
|
100
|
|
|
batch_size=self.batch_size, |
|
101
|
|
|
name="moving_image", |
|
102
|
|
|
) |
|
103
|
|
|
# (batch, f_dim1, f_dim2, f_dim3, 1) |
|
104
|
|
|
fixed_image = tf.keras.Input( |
|
105
|
|
|
shape=self.fixed_image_size, |
|
106
|
|
|
batch_size=self.batch_size, |
|
107
|
|
|
name="fixed_image", |
|
108
|
|
|
) |
|
109
|
|
|
# (batch, index_size) |
|
110
|
|
|
indices = tf.keras.Input( |
|
111
|
|
|
shape=(self.index_size,), |
|
112
|
|
|
batch_size=self.batch_size, |
|
113
|
|
|
name="indices", |
|
114
|
|
|
) |
|
115
|
|
|
|
|
116
|
|
|
if not self.labeled: |
|
117
|
|
|
return dict( |
|
118
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
|
119
|
|
|
) |
|
120
|
|
|
|
|
121
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
|
122
|
|
|
moving_label = tf.keras.Input( |
|
123
|
|
|
shape=self.moving_image_size, |
|
124
|
|
|
batch_size=self.batch_size, |
|
125
|
|
|
name="moving_label", |
|
126
|
|
|
) |
|
127
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
|
128
|
|
|
fixed_label = tf.keras.Input( |
|
129
|
|
|
shape=self.fixed_image_size, |
|
130
|
|
|
batch_size=self.batch_size, |
|
131
|
|
|
name="fixed_label", |
|
132
|
|
|
) |
|
133
|
|
|
return dict( |
|
134
|
|
|
moving_image=moving_image, |
|
135
|
|
|
fixed_image=fixed_image, |
|
136
|
|
|
moving_label=moving_label, |
|
137
|
|
|
fixed_label=fixed_label, |
|
138
|
|
|
indices=indices, |
|
139
|
|
|
) |
|
140
|
|
|
|
|
141
|
|
|
def concat_images( |
|
142
|
|
|
self, |
|
143
|
|
|
moving_image: tf.Tensor, |
|
144
|
|
|
fixed_image: tf.Tensor, |
|
145
|
|
|
moving_label: Optional[tf.Tensor] = None, |
|
146
|
|
|
) -> tf.Tensor: |
|
147
|
|
|
""" |
|
148
|
|
|
Adjust image shape and concatenate them together. |
|
149
|
|
|
|
|
150
|
|
|
:param moving_image: registration source |
|
151
|
|
|
:param fixed_image: registration target |
|
152
|
|
|
:param moving_label: optional, only used for conditional model. |
|
153
|
|
|
:return: |
|
154
|
|
|
""" |
|
155
|
|
|
images = [] |
|
156
|
|
|
|
|
157
|
|
|
resize_layer = layer.Resize3d(shape=self.fixed_image_size) |
|
158
|
|
|
|
|
159
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
|
160
|
|
|
moving_image = tf.expand_dims(moving_image, axis=4) |
|
161
|
|
|
moving_image = resize_layer(moving_image) |
|
162
|
|
|
images.append(moving_image) |
|
163
|
|
|
|
|
164
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
|
165
|
|
|
fixed_image = tf.expand_dims(fixed_image, axis=4) |
|
166
|
|
|
images.append(fixed_image) |
|
167
|
|
|
|
|
168
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
|
169
|
|
|
if moving_label is not None: |
|
170
|
|
|
moving_label = tf.expand_dims(moving_label, axis=4) |
|
171
|
|
|
moving_label = resize_layer(moving_label) |
|
172
|
|
|
images.append(moving_label) |
|
173
|
|
|
|
|
174
|
|
|
# (batch, f_dim1, f_dim2, f_dim3, 2 or 3) |
|
175
|
|
|
images = tf.concat(images, axis=4) |
|
176
|
|
|
return images |
|
177
|
|
|
|
|
178
|
|
|
def _build_loss(self, name: str, inputs_dict: dict): |
|
179
|
|
|
""" |
|
180
|
|
|
Build and add one weighted loss together with the metrics. |
|
181
|
|
|
|
|
182
|
|
|
:param name: name of loss, image / label / regularization. |
|
183
|
|
|
:param inputs_dict: inputs for loss function |
|
184
|
|
|
""" |
|
185
|
|
|
|
|
186
|
|
|
if name not in self.config["loss"]: |
|
187
|
|
|
# loss config is not defined |
|
188
|
|
|
logging.warning( |
|
189
|
|
|
f"The configuration for loss {name} is not defined. " |
|
190
|
|
|
f"Therefore it is not used." |
|
191
|
|
|
) |
|
192
|
|
|
return |
|
193
|
|
|
|
|
194
|
|
|
loss_configs = self.config["loss"][name] |
|
195
|
|
|
if not isinstance(loss_configs, list): |
|
196
|
|
|
loss_configs = [loss_configs] |
|
197
|
|
|
|
|
198
|
|
|
for loss_config in loss_configs: |
|
199
|
|
|
|
|
200
|
|
|
if "weight" not in loss_config: |
|
201
|
|
|
# default loss weight 1 |
|
202
|
|
|
logging.warning( |
|
203
|
|
|
f"The weight for loss {name} is not defined." |
|
204
|
|
|
f"Default weight = 1.0 is used." |
|
205
|
|
|
) |
|
206
|
|
|
loss_config["weight"] = 1.0 |
|
207
|
|
|
|
|
208
|
|
|
# build loss |
|
209
|
|
|
weight = loss_config["weight"] |
|
210
|
|
|
|
|
211
|
|
|
if weight == 0: |
|
212
|
|
|
logging.warning( |
|
213
|
|
|
f"The weight for loss {name} is zero." f"Loss is not used." |
|
214
|
|
|
) |
|
215
|
|
|
return |
|
216
|
|
|
|
|
217
|
|
|
loss_layer: tf.keras.layers.Layer = REGISTRY.build_loss( |
|
218
|
|
|
config=dict_without(d=loss_config, key="weight") |
|
219
|
|
|
) |
|
220
|
|
|
loss_value = loss_layer(**inputs_dict) / self.global_batch_size |
|
221
|
|
|
weighted_loss = loss_value * weight |
|
222
|
|
|
|
|
223
|
|
|
# add loss |
|
224
|
|
|
self._model.add_loss(weighted_loss) |
|
225
|
|
|
|
|
226
|
|
|
# add metric |
|
227
|
|
|
self._model.add_metric( |
|
228
|
|
|
loss_value, name=f"loss/{name}_{loss_layer.name}", aggregation="mean" |
|
229
|
|
|
) |
|
230
|
|
|
self._model.add_metric( |
|
231
|
|
|
weighted_loss, |
|
232
|
|
|
name=f"loss/{name}_{loss_layer.name}_weighted", |
|
233
|
|
|
aggregation="mean", |
|
234
|
|
|
) |
|
235
|
|
|
|
|
236
|
|
|
@abstractmethod |
|
237
|
|
|
def build_loss(self): |
|
238
|
|
|
"""Build losses according to configs.""" |
|
239
|
|
|
|
|
240
|
|
|
# input metrics |
|
241
|
|
|
fixed_image = self._inputs["fixed_image"] |
|
242
|
|
|
moving_image = self._inputs["moving_image"] |
|
243
|
|
|
self.log_tensor_stats(tensor=moving_image, name="moving_image") |
|
244
|
|
|
self.log_tensor_stats(tensor=fixed_image, name="fixed_image") |
|
245
|
|
|
|
|
246
|
|
|
# image loss, conditional model does not have this |
|
247
|
|
|
if "pred_fixed_image" in self._outputs: |
|
248
|
|
|
pred_fixed_image = self._outputs["pred_fixed_image"] |
|
249
|
|
|
self._build_loss( |
|
250
|
|
|
name="image", |
|
251
|
|
|
inputs_dict=dict(y_true=fixed_image, y_pred=pred_fixed_image), |
|
252
|
|
|
) |
|
253
|
|
|
|
|
254
|
|
|
if self.labeled: |
|
255
|
|
|
# input metrics |
|
256
|
|
|
fixed_label = self._inputs["fixed_label"] |
|
257
|
|
|
moving_label = self._inputs["moving_label"] |
|
258
|
|
|
self.log_tensor_stats(tensor=moving_label, name="moving_label") |
|
259
|
|
|
self.log_tensor_stats(tensor=fixed_label, name="fixed_label") |
|
260
|
|
|
|
|
261
|
|
|
# label loss |
|
262
|
|
|
pred_fixed_label = self._outputs["pred_fixed_label"] |
|
263
|
|
|
self._build_loss( |
|
264
|
|
|
name="label", |
|
265
|
|
|
inputs_dict=dict(y_true=fixed_label, y_pred=pred_fixed_label), |
|
266
|
|
|
) |
|
267
|
|
|
|
|
268
|
|
|
# additional label metrics |
|
269
|
|
|
tre = compute_centroid_distance( |
|
270
|
|
|
y_true=fixed_label, y_pred=pred_fixed_label, grid=self.grid_ref |
|
271
|
|
|
) |
|
272
|
|
|
dice_binary = DiceScore(binary=True)( |
|
273
|
|
|
y_true=fixed_label, y_pred=pred_fixed_label |
|
274
|
|
|
) |
|
275
|
|
|
self._model.add_metric(tre, name="metric/TRE", aggregation="mean") |
|
276
|
|
|
self._model.add_metric( |
|
277
|
|
|
dice_binary, name="metric/BinaryDiceScore", aggregation="mean" |
|
278
|
|
|
) |
|
279
|
|
|
|
|
280
|
|
|
def call( |
|
281
|
|
|
self, inputs: Dict[str, tf.Tensor], training=None, mask=None |
|
282
|
|
|
) -> Dict[str, tf.Tensor]: |
|
283
|
|
|
""" |
|
284
|
|
|
Call the self._model. |
|
285
|
|
|
|
|
286
|
|
|
:param inputs: a dict of tensors. |
|
287
|
|
|
:param training: training or not. |
|
288
|
|
|
:param mask: maks for inputs. |
|
289
|
|
|
:return: |
|
290
|
|
|
""" |
|
291
|
|
|
return self._model(inputs, training=training, mask=mask) # pragma: no cover |
|
292
|
|
|
|
|
293
|
|
|
@abstractmethod |
|
294
|
|
|
def postprocess( |
|
295
|
|
|
self, |
|
296
|
|
|
inputs: Dict[str, tf.Tensor], |
|
297
|
|
|
outputs: Dict[str, tf.Tensor], |
|
298
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
|
299
|
|
|
""" |
|
300
|
|
|
Return a dict used for saving inputs and outputs. |
|
301
|
|
|
|
|
302
|
|
|
:param inputs: dict of model inputs |
|
303
|
|
|
:param outputs: dict of model outputs |
|
304
|
|
|
:return: tuple, indices and a dict. |
|
305
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
|
306
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
|
307
|
|
|
- on_label = True if the tensor depends on label |
|
308
|
|
|
""" |
|
309
|
|
|
|
|
310
|
|
|
def plot_model(self, output_dir: str): |
|
311
|
|
|
""" |
|
312
|
|
|
Save model structure in png. |
|
313
|
|
|
|
|
314
|
|
|
:param output_dir: path to the output dir. |
|
315
|
|
|
""" |
|
316
|
|
|
logging.info(self._model.summary()) |
|
317
|
|
|
try: |
|
318
|
|
|
tf.keras.utils.plot_model( |
|
319
|
|
|
self._model, |
|
320
|
|
|
to_file=os.path.join(output_dir, f"{self.name}.png"), |
|
321
|
|
|
dpi=96, |
|
322
|
|
|
show_shapes=True, |
|
323
|
|
|
show_layer_names=True, |
|
324
|
|
|
expand_nested=False, |
|
325
|
|
|
) |
|
326
|
|
|
except ImportError as err: # pragma: no cover |
|
327
|
|
|
logging.error( |
|
328
|
|
|
"Failed to plot model structure." |
|
329
|
|
|
"Please check if graphviz is installed.\n" |
|
330
|
|
|
"Error message is:" |
|
331
|
|
|
f"{err}" |
|
332
|
|
|
) |
|
333
|
|
|
|
|
334
|
|
|
def log_tensor_stats(self, tensor: tf.Tensor, name: str): |
|
335
|
|
|
""" |
|
336
|
|
|
Log statistics of a given tensor. |
|
337
|
|
|
|
|
338
|
|
|
:param tensor: tensor to monitor. |
|
339
|
|
|
:param name: name of the tensor. |
|
340
|
|
|
""" |
|
341
|
|
|
flatten = tf.reshape(tensor, shape=(self.batch_size, -1)) |
|
342
|
|
|
self._model.add_metric( |
|
343
|
|
|
tf.reduce_mean(flatten, axis=1), |
|
344
|
|
|
name=f"metric/{name}_mean", |
|
345
|
|
|
aggregation="mean", |
|
346
|
|
|
) |
|
347
|
|
|
self._model.add_metric( |
|
348
|
|
|
tf.reduce_min(flatten, axis=1), |
|
349
|
|
|
name=f"metric/{name}_min", |
|
350
|
|
|
aggregation="min", |
|
351
|
|
|
) |
|
352
|
|
|
self._model.add_metric( |
|
353
|
|
|
tf.reduce_max(flatten, axis=1), |
|
354
|
|
|
name=f"metric/{name}_max", |
|
355
|
|
|
aggregation="max", |
|
356
|
|
|
) |
|
357
|
|
|
|
|
358
|
|
|
|
|
359
|
|
|
@REGISTRY.register_model(name="ddf") |
|
360
|
|
|
class DDFModel(RegistrationModel): |
|
361
|
|
|
""" |
|
362
|
|
|
A registration model predicts DDF. |
|
363
|
|
|
|
|
364
|
|
|
When using global net as backbone, |
|
365
|
|
|
the model predicts an affine transformation parameters, |
|
366
|
|
|
and a DDF is calculated based on that. |
|
367
|
|
|
""" |
|
368
|
|
|
|
|
369
|
|
|
name = "DDFModel" |
|
370
|
|
|
|
|
371
|
|
|
def _resize_interpolate(self, field, control_points): |
|
372
|
|
|
resize = layer.ResizeCPTransform(control_points) |
|
373
|
|
|
field = resize(field) |
|
374
|
|
|
|
|
375
|
|
|
interpolate = layer.BSplines3DTransform(control_points, self.fixed_image_size) |
|
376
|
|
|
field = interpolate(field) |
|
377
|
|
|
|
|
378
|
|
|
return field |
|
379
|
|
|
|
|
380
|
|
|
def build_model(self): |
|
381
|
|
|
"""Build the model to be saved as self._model.""" |
|
382
|
|
|
# build inputs |
|
383
|
|
|
self._inputs = self.build_inputs() |
|
384
|
|
|
moving_image = self._inputs["moving_image"] |
|
385
|
|
|
fixed_image = self._inputs["fixed_image"] |
|
386
|
|
|
|
|
387
|
|
|
# build ddf |
|
388
|
|
|
control_points = self.config["backbone"].pop("control_points", False) |
|
389
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image) |
|
390
|
|
|
backbone = REGISTRY.build_backbone( |
|
391
|
|
|
config=self.config["backbone"], |
|
392
|
|
|
default_args=dict( |
|
393
|
|
|
image_size=self.fixed_image_size, |
|
394
|
|
|
out_channels=3, |
|
395
|
|
|
out_kernel_initializer="zeros", |
|
396
|
|
|
out_activation=None, |
|
397
|
|
|
), |
|
398
|
|
|
) |
|
399
|
|
|
|
|
400
|
|
|
if isinstance(backbone, GlobalNet): |
|
401
|
|
|
# (f_dim1, f_dim2, f_dim3, 3), (4, 3) |
|
402
|
|
|
ddf, theta = backbone(inputs=backbone_inputs) |
|
403
|
|
|
self._outputs = dict(ddf=ddf, theta=theta) |
|
404
|
|
|
else: |
|
405
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
|
406
|
|
|
ddf = backbone(inputs=backbone_inputs) |
|
407
|
|
|
ddf = ( |
|
408
|
|
|
self._resize_interpolate(ddf, control_points) if control_points else ddf |
|
409
|
|
|
) |
|
410
|
|
|
self._outputs = dict(ddf=ddf) |
|
411
|
|
|
|
|
412
|
|
|
# build outputs |
|
413
|
|
|
warping = layer.Warping(fixed_image_size=self.fixed_image_size) |
|
414
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
|
415
|
|
|
pred_fixed_image = warping(inputs=[ddf, moving_image]) |
|
416
|
|
|
self._outputs["pred_fixed_image"] = pred_fixed_image |
|
417
|
|
|
|
|
418
|
|
|
if not self.labeled: |
|
419
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
|
420
|
|
|
|
|
421
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
|
422
|
|
|
moving_label = self._inputs["moving_label"] |
|
423
|
|
|
pred_fixed_label = warping(inputs=[ddf, moving_label]) |
|
424
|
|
|
|
|
425
|
|
|
self._outputs["pred_fixed_label"] = pred_fixed_label |
|
426
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
|
427
|
|
|
|
|
428
|
|
|
def build_loss(self): |
|
429
|
|
|
"""Build losses according to configs.""" |
|
430
|
|
|
super().build_loss() |
|
431
|
|
|
|
|
432
|
|
|
# ddf loss and metrics |
|
433
|
|
|
ddf = self._outputs["ddf"] |
|
434
|
|
|
self._build_loss(name="regularization", inputs_dict=dict(inputs=ddf)) |
|
435
|
|
|
self.log_tensor_stats(tensor=ddf, name="ddf") |
|
436
|
|
|
|
|
437
|
|
|
def postprocess( |
|
438
|
|
|
self, |
|
439
|
|
|
inputs: Dict[str, tf.Tensor], |
|
440
|
|
|
outputs: Dict[str, tf.Tensor], |
|
441
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
|
442
|
|
|
""" |
|
443
|
|
|
Return a dict used for saving inputs and outputs. |
|
444
|
|
|
|
|
445
|
|
|
:param inputs: dict of model inputs |
|
446
|
|
|
:param outputs: dict of model outputs |
|
447
|
|
|
:return: tuple, indices and a dict. |
|
448
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
|
449
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
|
450
|
|
|
- on_label = True if the tensor depends on label |
|
451
|
|
|
""" |
|
452
|
|
|
indices = inputs["indices"] |
|
453
|
|
|
processed = dict( |
|
454
|
|
|
moving_image=(inputs["moving_image"], True, False), |
|
455
|
|
|
fixed_image=(inputs["fixed_image"], True, False), |
|
456
|
|
|
ddf=(outputs["ddf"], True, False), |
|
457
|
|
|
pred_fixed_image=(outputs["pred_fixed_image"], True, False), |
|
458
|
|
|
) |
|
459
|
|
|
|
|
460
|
|
|
# save theta for affine model |
|
461
|
|
|
if "theta" in outputs: |
|
462
|
|
|
processed["theta"] = (outputs["theta"], None, None) # type: ignore |
|
463
|
|
|
|
|
464
|
|
|
if not self.labeled: |
|
465
|
|
|
return indices, processed |
|
466
|
|
|
|
|
467
|
|
|
processed = { |
|
468
|
|
|
**dict( |
|
469
|
|
|
moving_label=(inputs["moving_label"], False, True), |
|
470
|
|
|
fixed_label=(inputs["fixed_label"], False, True), |
|
471
|
|
|
pred_fixed_label=(outputs["pred_fixed_label"], False, True), |
|
472
|
|
|
), |
|
473
|
|
|
**processed, |
|
474
|
|
|
} |
|
475
|
|
|
|
|
476
|
|
|
return indices, processed |
|
477
|
|
|
|
|
478
|
|
|
|
|
479
|
|
|
@REGISTRY.register_model(name="dvf") |
|
480
|
|
|
class DVFModel(DDFModel): |
|
481
|
|
|
""" |
|
482
|
|
|
A registration model predicts DVF. |
|
483
|
|
|
|
|
484
|
|
|
DDF is calculated based on DVF. |
|
485
|
|
|
""" |
|
486
|
|
|
|
|
487
|
|
|
name = "DVFModel" |
|
488
|
|
|
|
|
489
|
|
|
def build_model(self): |
|
490
|
|
|
"""Build the model to be saved as self._model.""" |
|
491
|
|
|
# build inputs |
|
492
|
|
|
self._inputs = self.build_inputs() |
|
493
|
|
|
moving_image = self._inputs["moving_image"] |
|
494
|
|
|
fixed_image = self._inputs["fixed_image"] |
|
495
|
|
|
control_points = self.config["backbone"].pop("control_points", False) |
|
496
|
|
|
|
|
497
|
|
|
# build ddf |
|
498
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image) |
|
499
|
|
|
backbone = REGISTRY.build_backbone( |
|
500
|
|
|
config=self.config["backbone"], |
|
501
|
|
|
default_args=dict( |
|
502
|
|
|
image_size=self.fixed_image_size, |
|
503
|
|
|
out_channels=3, |
|
504
|
|
|
out_kernel_initializer="zeros", |
|
505
|
|
|
out_activation=None, |
|
506
|
|
|
), |
|
507
|
|
|
) |
|
508
|
|
|
dvf = backbone(inputs=backbone_inputs) |
|
509
|
|
|
dvf = self._resize_interpolate(dvf, control_points) if control_points else dvf |
|
510
|
|
|
ddf = layer.IntDVF(fixed_image_size=self.fixed_image_size)(dvf) |
|
511
|
|
|
|
|
512
|
|
|
# build outputs |
|
513
|
|
|
self._warping = layer.Warping(fixed_image_size=self.fixed_image_size) |
|
514
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
|
515
|
|
|
pred_fixed_image = self._warping(inputs=[ddf, moving_image]) |
|
516
|
|
|
|
|
517
|
|
|
self._outputs = dict(dvf=dvf, ddf=ddf, pred_fixed_image=pred_fixed_image) |
|
518
|
|
|
|
|
519
|
|
|
if not self.labeled: |
|
520
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
|
521
|
|
|
|
|
522
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
|
523
|
|
|
moving_label = self._inputs["moving_label"] |
|
524
|
|
|
pred_fixed_label = self._warping(inputs=[ddf, moving_label]) |
|
525
|
|
|
|
|
526
|
|
|
self._outputs["pred_fixed_label"] = pred_fixed_label |
|
527
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
|
528
|
|
|
|
|
529
|
|
|
def build_loss(self): |
|
530
|
|
|
"""Build losses according to configs.""" |
|
531
|
|
|
super().build_loss() |
|
532
|
|
|
|
|
533
|
|
|
# dvf metrics |
|
534
|
|
|
dvf = self._outputs["dvf"] |
|
535
|
|
|
self.log_tensor_stats(tensor=dvf, name="dvf") |
|
536
|
|
|
|
|
537
|
|
|
def postprocess( |
|
538
|
|
|
self, |
|
539
|
|
|
inputs: Dict[str, tf.Tensor], |
|
540
|
|
|
outputs: Dict[str, tf.Tensor], |
|
541
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
|
542
|
|
|
""" |
|
543
|
|
|
Return a dict used for saving inputs and outputs. |
|
544
|
|
|
|
|
545
|
|
|
:param inputs: dict of model inputs |
|
546
|
|
|
:param outputs: dict of model outputs |
|
547
|
|
|
:return: tuple, indices and a dict. |
|
548
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
|
549
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
|
550
|
|
|
- on_label = True if the tensor depends on label |
|
551
|
|
|
""" |
|
552
|
|
|
indices, processed = super().postprocess(inputs=inputs, outputs=outputs) |
|
553
|
|
|
processed["dvf"] = (outputs["dvf"], True, False) |
|
554
|
|
|
return indices, processed |
|
555
|
|
|
|
|
556
|
|
|
|
|
557
|
|
|
@REGISTRY.register_model(name="conditional") |
|
558
|
|
|
class ConditionalModel(RegistrationModel): |
|
559
|
|
|
""" |
|
560
|
|
|
A registration model predicts fixed image label without DDF or DVF. |
|
561
|
|
|
""" |
|
562
|
|
|
|
|
563
|
|
|
name = "ConditionalModel" |
|
564
|
|
|
|
|
565
|
|
|
def build_model(self): |
|
566
|
|
|
"""Build the model to be saved as self._model.""" |
|
567
|
|
|
assert self.labeled |
|
568
|
|
|
|
|
569
|
|
|
# build inputs |
|
570
|
|
|
self._inputs = self.build_inputs() |
|
571
|
|
|
moving_image = self._inputs["moving_image"] |
|
572
|
|
|
fixed_image = self._inputs["fixed_image"] |
|
573
|
|
|
moving_label = self._inputs["moving_label"] |
|
574
|
|
|
|
|
575
|
|
|
# build ddf |
|
576
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image, moving_label) |
|
577
|
|
|
backbone = REGISTRY.build_backbone( |
|
578
|
|
|
config=self.config["backbone"], |
|
579
|
|
|
default_args=dict( |
|
580
|
|
|
image_size=self.fixed_image_size, |
|
581
|
|
|
out_channels=1, |
|
582
|
|
|
out_kernel_initializer="glorot_uniform", |
|
583
|
|
|
out_activation="sigmoid", |
|
584
|
|
|
), |
|
585
|
|
|
) |
|
586
|
|
|
# (batch, f_dim1, f_dim2, f_dim3) |
|
587
|
|
|
pred_fixed_label = backbone(inputs=backbone_inputs) |
|
588
|
|
|
pred_fixed_label = tf.squeeze(pred_fixed_label, axis=4) |
|
589
|
|
|
|
|
590
|
|
|
self._outputs = dict(pred_fixed_label=pred_fixed_label) |
|
591
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
|
592
|
|
|
|
|
593
|
|
|
def postprocess( |
|
594
|
|
|
self, |
|
595
|
|
|
inputs: Dict[str, tf.Tensor], |
|
596
|
|
|
outputs: Dict[str, tf.Tensor], |
|
597
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
|
598
|
|
|
""" |
|
599
|
|
|
Return a dict used for saving inputs and outputs. |
|
600
|
|
|
|
|
601
|
|
|
:param inputs: dict of model inputs |
|
602
|
|
|
:param outputs: dict of model outputs |
|
603
|
|
|
:return: tuple, indices and a dict. |
|
604
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
|
605
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
|
606
|
|
|
- on_label = True if the tensor depends on label |
|
607
|
|
|
""" |
|
608
|
|
|
indices = inputs["indices"] |
|
609
|
|
|
processed = dict( |
|
610
|
|
|
moving_image=(inputs["moving_image"], True, False), |
|
611
|
|
|
fixed_image=(inputs["fixed_image"], True, False), |
|
612
|
|
|
pred_fixed_label=(outputs["pred_fixed_label"], True, True), |
|
613
|
|
|
moving_label=(inputs["moving_label"], False, True), |
|
614
|
|
|
fixed_label=(inputs["fixed_label"], False, True), |
|
615
|
|
|
) |
|
616
|
|
|
|
|
617
|
|
|
return indices, processed |
|
618
|
|
|
|