|
1
|
|
|
""" |
|
2
|
|
|
Tests for deepreg/model/loss/image.py in |
|
3
|
|
|
pytest style. |
|
4
|
|
|
Notes: The format of inputs to the function dissimilarity_fn |
|
5
|
|
|
in image.py should be better converted into tf tensor type beforehand. |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
from test.unit.util import is_equal_tf |
|
9
|
|
|
from typing import Tuple |
|
10
|
|
|
|
|
11
|
|
|
import numpy as np |
|
12
|
|
|
import pytest |
|
13
|
|
|
import tensorflow as tf |
|
14
|
|
|
|
|
15
|
|
|
import deepreg.loss.image as image |
|
16
|
|
|
from deepreg.constant import EPS |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class TestGlobalMutualInformation: |
|
20
|
|
|
@pytest.mark.parametrize( |
|
21
|
|
|
"y_true,y_pred,shape,expected", |
|
22
|
|
|
[ |
|
23
|
|
|
(0.6, 0.3, (3, 3, 3, 3), 0.0), |
|
24
|
|
|
(0.6, 0.3, (3, 3, 3, 3, 3), 0.0), |
|
25
|
|
|
(0.0, 1.0, (3, 3, 3, 3, 3), 0.0), |
|
26
|
|
|
], |
|
27
|
|
|
) |
|
28
|
|
|
def test_zero_info(self, y_true, y_pred, shape, expected): |
|
29
|
|
|
y_true = y_true * np.ones(shape=shape) |
|
30
|
|
|
y_pred = y_pred * np.ones(shape=shape) |
|
31
|
|
|
expected = expected * np.ones(shape=(shape[0],)) |
|
32
|
|
|
got = image.GlobalMutualInformation().call( |
|
33
|
|
|
y_true, |
|
34
|
|
|
y_pred, |
|
35
|
|
|
) |
|
36
|
|
|
assert is_equal_tf(got, expected) |
|
37
|
|
|
|
|
38
|
|
|
def test_get_config(self): |
|
39
|
|
|
got = image.GlobalMutualInformation().get_config() |
|
40
|
|
|
expected = dict( |
|
41
|
|
|
num_bins=23, |
|
42
|
|
|
sigma_ratio=0.5, |
|
43
|
|
|
reduction=tf.keras.losses.Reduction.AUTO, |
|
44
|
|
|
name="GlobalMutualInformation", |
|
45
|
|
|
) |
|
46
|
|
|
assert got == expected |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 5, 7]) |
|
50
|
|
|
@pytest.mark.parametrize("name", ["gaussian", "triangular", "rectangular"]) |
|
51
|
|
|
def test_kernel_fn(kernel_size, name): |
|
52
|
|
|
kernel_fn = image.LocalNormalizedCrossCorrelation.kernel_fn_dict[name] |
|
53
|
|
|
filters = kernel_fn(kernel_size) |
|
54
|
|
|
assert filters.shape == (kernel_size,) |
|
55
|
|
|
|
|
56
|
|
|
|
|
57
|
|
|
class TestLocalNormalizedCrossCorrelation: |
|
58
|
|
|
@pytest.mark.parametrize( |
|
59
|
|
|
("y_true_shape", "y_pred_shape"), |
|
60
|
|
|
[ |
|
61
|
|
|
((2, 3, 4, 5), (2, 3, 4, 5)), |
|
62
|
|
|
((2, 3, 4, 5), (2, 3, 4, 5, 1)), |
|
63
|
|
|
((2, 3, 4, 5, 1), (2, 3, 4, 5)), |
|
64
|
|
|
((2, 3, 4, 5, 1), (2, 3, 4, 5, 1)), |
|
65
|
|
|
], |
|
66
|
|
|
) |
|
67
|
|
|
def test_input_shape(self, y_true_shape: Tuple, y_pred_shape: Tuple): |
|
68
|
|
|
""" |
|
69
|
|
|
Test input with / without channel axis. |
|
70
|
|
|
|
|
71
|
|
|
:param y_true_shape: input shape for y_true. |
|
72
|
|
|
:param y_pred_shape: input shape for y_pred. |
|
73
|
|
|
""" |
|
74
|
|
|
y_true = tf.ones(shape=y_true_shape) |
|
75
|
|
|
y_pred = tf.ones(shape=y_pred_shape) |
|
76
|
|
|
got = image.LocalNormalizedCrossCorrelation().call( |
|
77
|
|
|
y_true, |
|
78
|
|
|
y_pred, |
|
79
|
|
|
) |
|
80
|
|
|
assert got.shape == y_true_shape[:1] |
|
81
|
|
|
|
|
82
|
|
|
@pytest.mark.parametrize( |
|
83
|
|
|
("y_true_shape", "y_pred_shape", "name"), |
|
84
|
|
|
[ |
|
85
|
|
|
((2, 3, 4, 5), (2, 3, 4, 5, 6), "y_pred"), |
|
86
|
|
|
((2, 3, 4, 5, 6), (2, 3, 4, 5), "y_true"), |
|
87
|
|
|
], |
|
88
|
|
|
) |
|
89
|
|
|
def test_input_shape_err(self, y_true_shape: Tuple, y_pred_shape: Tuple, name: str): |
|
90
|
|
|
""" |
|
91
|
|
|
Current LNCC does not support image having channel dimension > 1. |
|
92
|
|
|
|
|
93
|
|
|
:param y_true_shape: input shape for y_true. |
|
94
|
|
|
:param y_pred_shape: input shape for y_pred. |
|
95
|
|
|
:param name: name of the tensor having error. |
|
96
|
|
|
""" |
|
97
|
|
|
y_true = tf.ones(shape=y_true_shape) |
|
98
|
|
|
y_pred = tf.ones(shape=y_pred_shape) |
|
99
|
|
|
with pytest.raises(ValueError) as err_info: |
|
100
|
|
|
image.LocalNormalizedCrossCorrelation().call(y_true, y_pred) |
|
101
|
|
|
assert f"Last dimension of {name} is not one." in str(err_info.value) |
|
102
|
|
|
|
|
103
|
|
|
@pytest.mark.parametrize("value", [0.0, 0.5, 1.0]) |
|
104
|
|
|
@pytest.mark.parametrize( |
|
105
|
|
|
("smooth_nr", "smooth_dr", "expected"), |
|
106
|
|
|
[ |
|
107
|
|
|
(1e-5, 1e-5, 1), |
|
108
|
|
|
(0, 1e-5, 0), |
|
109
|
|
|
(1e-5, 0, np.inf), |
|
110
|
|
|
(0, 0, np.nan), |
|
111
|
|
|
(1e-7, 1e-7, 1), |
|
112
|
|
|
], |
|
113
|
|
|
) |
|
114
|
|
|
def test_smooth( |
|
115
|
|
|
self, |
|
116
|
|
|
value: float, |
|
117
|
|
|
smooth_nr: float, |
|
118
|
|
|
smooth_dr: float, |
|
119
|
|
|
expected: float, |
|
120
|
|
|
): |
|
121
|
|
|
""" |
|
122
|
|
|
Test values in extreme cases where variances are all zero. |
|
123
|
|
|
|
|
124
|
|
|
:param value: value for input. |
|
125
|
|
|
:param smooth_nr: constant for numerator. |
|
126
|
|
|
:param smooth_dr: constant for denominator. |
|
127
|
|
|
:param expected: target value. |
|
128
|
|
|
""" |
|
129
|
|
|
kernel_size = 5 |
|
130
|
|
|
mid = kernel_size // 2 |
|
131
|
|
|
shape = (1, kernel_size, kernel_size, kernel_size, 1) |
|
132
|
|
|
y_true = tf.ones(shape=shape) * value |
|
133
|
|
|
y_pred = tf.ones(shape=shape) * value |
|
134
|
|
|
|
|
135
|
|
|
got = image.LocalNormalizedCrossCorrelation( |
|
136
|
|
|
kernel_size=kernel_size, |
|
137
|
|
|
smooth_nr=smooth_nr, |
|
138
|
|
|
smooth_dr=smooth_dr, |
|
139
|
|
|
).calc_ncc( |
|
140
|
|
|
y_true, |
|
141
|
|
|
y_pred, |
|
142
|
|
|
) |
|
143
|
|
|
got = got[0, mid, mid, mid, 0] |
|
144
|
|
|
expected = tf.constant(expected) |
|
145
|
|
|
assert is_equal_tf(got, expected) |
|
146
|
|
|
|
|
147
|
|
|
@pytest.mark.parametrize( |
|
148
|
|
|
"kernel_type", |
|
149
|
|
|
["rectangular", "gaussian", "triangular"], |
|
150
|
|
|
) |
|
151
|
|
|
@pytest.mark.parametrize( |
|
152
|
|
|
"kernel_size", |
|
153
|
|
|
[3, 5, 7], |
|
154
|
|
|
) |
|
155
|
|
|
def test_exact_value(self, kernel_type, kernel_size): |
|
156
|
|
|
""" |
|
157
|
|
|
Test the exact value at the center of a cube. |
|
158
|
|
|
|
|
159
|
|
|
:param kernel_type: name of kernel. |
|
160
|
|
|
:param kernel_size: size of the kernel and the cube. |
|
161
|
|
|
""" |
|
162
|
|
|
# init |
|
163
|
|
|
mid = kernel_size // 2 |
|
164
|
|
|
tf.random.set_seed(0) |
|
165
|
|
|
y_true = tf.random.uniform(shape=(1, kernel_size, kernel_size, kernel_size, 1)) |
|
166
|
|
|
y_pred = tf.random.uniform(shape=(1, kernel_size, kernel_size, kernel_size, 1)) |
|
167
|
|
|
loss = image.LocalNormalizedCrossCorrelation( |
|
168
|
|
|
kernel_type=kernel_type, kernel_size=kernel_size |
|
169
|
|
|
) |
|
170
|
|
|
|
|
171
|
|
|
# obtained value |
|
172
|
|
|
got = loss.calc_ncc(y_true=y_true, y_pred=y_pred) |
|
173
|
|
|
got = got[0, mid, mid, mid, 0] # center voxel |
|
174
|
|
|
|
|
175
|
|
|
# target value |
|
176
|
|
|
kernel_3d = ( |
|
177
|
|
|
loss.kernel[:, None, None] |
|
178
|
|
|
* loss.kernel[None, :, None] |
|
179
|
|
|
* loss.kernel[None, None, :] |
|
180
|
|
|
) |
|
181
|
|
|
kernel_3d = kernel_3d[None, :, :, :, None] |
|
182
|
|
|
|
|
183
|
|
|
y_true_mean = tf.reduce_sum(y_true * kernel_3d) / loss.kernel_vol |
|
184
|
|
|
y_true_normalized = y_true - y_true_mean |
|
185
|
|
|
y_true_var = tf.reduce_sum(y_true_normalized ** 2 * kernel_3d) |
|
186
|
|
|
|
|
187
|
|
|
y_pred_mean = tf.reduce_sum(y_pred * kernel_3d) / loss.kernel_vol |
|
188
|
|
|
y_pred_normalized = y_pred - y_pred_mean |
|
189
|
|
|
y_pred_var = tf.reduce_sum(y_pred_normalized ** 2 * kernel_3d) |
|
190
|
|
|
|
|
191
|
|
|
cross = tf.reduce_sum(y_true_normalized * y_pred_normalized * kernel_3d) |
|
192
|
|
|
expected = (cross ** 2 + EPS) / (y_pred_var * y_true_var + EPS) |
|
193
|
|
|
|
|
194
|
|
|
# check |
|
195
|
|
|
assert is_equal_tf(got, expected) |
|
196
|
|
|
|
|
197
|
|
|
def test_kernel_error(self): |
|
198
|
|
|
"""Test the error message when using wrong kernel.""" |
|
199
|
|
|
with pytest.raises(ValueError) as err_info: |
|
200
|
|
|
image.LocalNormalizedCrossCorrelation(kernel_type="constant") |
|
201
|
|
|
assert "Wrong kernel_type constant for LNCC loss type." in str(err_info.value) |
|
202
|
|
|
|
|
203
|
|
|
def test_get_config(self): |
|
204
|
|
|
"""Test the config is saved correctly.""" |
|
205
|
|
|
got = image.LocalNormalizedCrossCorrelation().get_config() |
|
206
|
|
|
expected = dict( |
|
207
|
|
|
kernel_size=9, |
|
208
|
|
|
kernel_type="rectangular", |
|
209
|
|
|
reduction=tf.keras.losses.Reduction.AUTO, |
|
210
|
|
|
name="LocalNormalizedCrossCorrelation", |
|
211
|
|
|
smooth_nr=1e-5, |
|
212
|
|
|
smooth_dr=1e-5, |
|
213
|
|
|
) |
|
214
|
|
|
assert got == expected |
|
215
|
|
|
|
|
216
|
|
|
|
|
217
|
|
|
class TestGlobalNormalizedCrossCorrelation: |
|
218
|
|
|
@pytest.mark.parametrize( |
|
219
|
|
|
"y_true,y_pred,shape,expected", |
|
220
|
|
|
[ |
|
221
|
|
|
(0.6, 0.3, (3, 3), 1), |
|
222
|
|
|
(0.6, 0.3, (3, 3, 3), 1), |
|
223
|
|
|
(0.6, -0.3, (3, 3, 3), 1), |
|
224
|
|
|
(0.6, 0.3, (3, 3, 3, 3), 1), |
|
225
|
|
|
], |
|
226
|
|
|
) |
|
227
|
|
|
def test_output(self, y_true, y_pred, shape, expected): |
|
228
|
|
|
|
|
229
|
|
|
y_true = y_true * tf.ones(shape=shape) |
|
230
|
|
|
y_pred = y_pred * tf.ones(shape=shape) |
|
231
|
|
|
|
|
232
|
|
|
pad_width = tuple([(0, 0)] + [(1, 1)] * (len(shape) - 1)) |
|
233
|
|
|
y_true = np.pad(y_true, pad_width=pad_width) |
|
234
|
|
|
y_pred = np.pad(y_pred, pad_width=pad_width) |
|
235
|
|
|
|
|
236
|
|
|
got = image.GlobalNormalizedCrossCorrelation().call( |
|
237
|
|
|
y_true, |
|
238
|
|
|
y_pred, |
|
239
|
|
|
) |
|
240
|
|
|
|
|
241
|
|
|
expected = expected * tf.ones(shape=(shape[0],)) |
|
242
|
|
|
|
|
243
|
|
|
assert is_equal_tf(got, expected) |
|
244
|
|
|
|