1
|
|
|
# coding=utf-8 |
|
|
|
|
2
|
|
|
|
3
|
|
|
from typing import List |
4
|
|
|
|
5
|
|
|
import tensorflow as tf |
6
|
|
|
import tensorflow.keras.layers as tfkl |
7
|
|
|
|
8
|
|
|
from deepreg.model import layer |
9
|
|
|
from deepreg.model.backbone.interface import Backbone |
10
|
|
|
from deepreg.registry import REGISTRY |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
@REGISTRY.register_backbone(name="local") |
14
|
|
|
class LocalNet(Backbone): |
15
|
|
|
""" |
16
|
|
|
Build LocalNet for image registration. |
17
|
|
|
|
18
|
|
|
Reference: |
19
|
|
|
|
20
|
|
|
- Hu, Yipeng, et al. |
21
|
|
|
"Weakly-supervised convolutional neural networks |
22
|
|
|
for multimodal image registration." |
23
|
|
|
Medical image analysis 49 (2018): 1-13. |
24
|
|
|
https://doi.org/10.1016/j.media.2018.07.002 |
25
|
|
|
|
26
|
|
|
- Hu, Yipeng, et al. |
27
|
|
|
"Label-driven weakly-supervised learning |
28
|
|
|
for multimodal deformable image registration," |
29
|
|
|
https://arxiv.org/abs/1711.01666 |
30
|
|
|
""" |
31
|
|
|
|
32
|
|
|
def __init__( |
33
|
|
|
self, |
34
|
|
|
image_size: tuple, |
35
|
|
|
out_channels: int, |
36
|
|
|
num_channel_initial: int, |
37
|
|
|
extract_levels: List[int], |
38
|
|
|
out_kernel_initializer: str, |
39
|
|
|
out_activation: str, |
40
|
|
|
control_points: (tuple, None) = None, |
41
|
|
|
name: str = "LocalNet", |
42
|
|
|
**kwargs, |
43
|
|
|
): |
44
|
|
|
""" |
45
|
|
|
Image is encoded gradually, i from level 0 to E, |
46
|
|
|
then it is decoded gradually, j from level E to D. |
47
|
|
|
Some of the decoded levels are used for generating extractions. |
48
|
|
|
|
49
|
|
|
So, extract_levels are between [0, E] with E = max(extract_levels), |
50
|
|
|
and D = min(extract_levels). |
51
|
|
|
|
52
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
53
|
|
|
:param out_channels: number of channels for the extractions |
54
|
|
|
:param num_channel_initial: number of initial channels. |
55
|
|
|
:param extract_levels: number of extraction levels. |
56
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
57
|
|
|
:param out_activation: activation to use at end layer. |
58
|
|
|
:param control_points: specify the distance between control points (in voxels). |
59
|
|
|
:param name: name of the backbone. |
60
|
|
|
:param kwargs: additional arguments. |
61
|
|
|
""" |
62
|
|
|
super().__init__( |
63
|
|
|
image_size=image_size, |
64
|
|
|
out_channels=out_channels, |
65
|
|
|
num_channel_initial=num_channel_initial, |
66
|
|
|
out_kernel_initializer=out_kernel_initializer, |
67
|
|
|
out_activation=out_activation, |
68
|
|
|
name=name, |
69
|
|
|
**kwargs, |
70
|
|
|
) |
71
|
|
|
|
72
|
|
|
# save parameters |
73
|
|
|
self._extract_levels = extract_levels |
74
|
|
|
self._extract_max_level = max(self._extract_levels) # E |
75
|
|
|
self._extract_min_level = min(self._extract_levels) # D |
76
|
|
|
|
77
|
|
|
# init layer variables |
78
|
|
|
num_channels = [ |
79
|
|
|
num_channel_initial * (2 ** level) |
80
|
|
|
for level in range(self._extract_max_level + 1) |
81
|
|
|
] # level 0 to E |
82
|
|
|
kernel_sizes = [ |
83
|
|
|
7 if level == 0 else 3 for level in range(self._extract_max_level + 1) |
84
|
|
|
] |
85
|
|
|
self._downsample_convs = [] |
86
|
|
|
self._downsample_pools = [] |
87
|
|
|
tensor_shape = image_size |
88
|
|
|
self._tensor_shapes = [tensor_shape] |
89
|
|
|
for i in range(self._extract_max_level): |
90
|
|
|
downsample_conv = tf.keras.Sequential( |
91
|
|
|
[ |
92
|
|
|
layer.Conv3dBlock( |
93
|
|
|
filters=num_channels[i], |
94
|
|
|
kernel_size=kernel_sizes[i], |
95
|
|
|
padding="same", |
96
|
|
|
), |
97
|
|
|
layer.ResidualConv3dBlock( |
98
|
|
|
filters=num_channels[i], |
99
|
|
|
kernel_size=kernel_sizes[i], |
100
|
|
|
padding="same", |
101
|
|
|
), |
102
|
|
|
] |
103
|
|
|
) |
104
|
|
|
downsample_pool = tfkl.MaxPool3D(pool_size=2, strides=2, padding="same") |
105
|
|
|
tensor_shape = tuple((x + 1) // 2 for x in tensor_shape) |
106
|
|
|
self._downsample_convs.append(downsample_conv) |
107
|
|
|
self._downsample_pools.append(downsample_pool) |
108
|
|
|
self._tensor_shapes.append(tensor_shape) |
109
|
|
|
|
110
|
|
|
self._conv3d_block = layer.Conv3dBlock( |
111
|
|
|
filters=num_channels[-1], kernel_size=3, padding="same" |
112
|
|
|
) # level E |
113
|
|
|
|
114
|
|
|
self._upsample_blocks = [] |
115
|
|
|
for level in range( |
116
|
|
|
self._extract_max_level - 1, self._extract_min_level - 1, -1 |
117
|
|
|
): # level D to E-1 |
118
|
|
|
padding = layer.deconv_output_padding( |
119
|
|
|
input_shape=self._tensor_shapes[level + 1], |
120
|
|
|
output_shape=self._tensor_shapes[level], |
121
|
|
|
kernel_size=kernel_sizes[level], |
122
|
|
|
stride=2, |
123
|
|
|
padding="same", |
124
|
|
|
) |
125
|
|
|
upsample_block = layer.LocalNetUpSampleResnetBlock( |
126
|
|
|
num_channels[level], |
127
|
|
|
output_padding=padding, |
128
|
|
|
output_shape=self._tensor_shapes[level], |
129
|
|
|
) |
130
|
|
|
self._upsample_blocks.append(upsample_block) |
131
|
|
|
|
132
|
|
|
self._extract_layers = [ |
133
|
|
|
tf.keras.Sequential( |
134
|
|
|
[ |
135
|
|
|
tfkl.Conv3D( |
136
|
|
|
filters=out_channels, |
137
|
|
|
kernel_size=3, |
138
|
|
|
strides=1, |
139
|
|
|
padding="same", |
140
|
|
|
kernel_initializer=out_kernel_initializer, |
141
|
|
|
activation=out_activation, |
142
|
|
|
), |
143
|
|
|
layer.Resize3d(shape=image_size), |
144
|
|
|
] |
145
|
|
|
) |
146
|
|
|
for _ in self._extract_levels |
147
|
|
|
] |
148
|
|
|
|
149
|
|
|
self.resize = ( |
150
|
|
|
layer.ResizeCPTransform(control_points) |
151
|
|
|
if control_points is not None |
152
|
|
|
else False |
153
|
|
|
) |
154
|
|
|
self.interpolate = ( |
155
|
|
|
layer.BSplines3DTransform(control_points, image_size) |
156
|
|
|
if control_points is not None |
157
|
|
|
else False |
158
|
|
|
) |
159
|
|
|
|
160
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
161
|
|
|
""" |
162
|
|
|
Build LocalNet graph based on built layers. |
163
|
|
|
|
164
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
165
|
|
|
:param training: None or bool. |
166
|
|
|
:param mask: None or tf.Tensor. |
167
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
168
|
|
|
""" |
169
|
|
|
|
170
|
|
|
# down sample from level 0 to E |
171
|
|
|
encoded = [] |
172
|
|
|
# outputs used for decoding, encoded[i] corresponds -> level i |
173
|
|
|
# stored only 0 to E-1 |
174
|
|
|
|
175
|
|
|
h_in = inputs |
176
|
|
|
for level in range(self._extract_max_level): # level 0 to E - 1 |
177
|
|
|
skip = self._downsample_convs[level](inputs=h_in, training=training) |
178
|
|
|
h_in = self._downsample_pools[level](inputs=skip) |
179
|
|
|
encoded.append(skip) |
180
|
|
|
h_bottom = self._conv3d_block( |
181
|
|
|
inputs=h_in, training=training |
182
|
|
|
) # level E of encoding/decoding |
183
|
|
|
|
184
|
|
|
# up sample from level E to D |
185
|
|
|
decoded = [h_bottom] # level E |
186
|
|
|
for idx, level in enumerate( |
187
|
|
|
range(self._extract_max_level - 1, self._extract_min_level - 1, -1) |
188
|
|
|
): # level E-1 to D |
189
|
|
|
h_bottom = self._upsample_blocks[idx]( |
190
|
|
|
inputs=[h_bottom, encoded[level]], training=training |
191
|
|
|
) |
192
|
|
|
decoded.append(h_bottom) |
193
|
|
|
|
194
|
|
|
# output |
195
|
|
|
output = tf.reduce_mean( |
196
|
|
|
tf.stack( |
197
|
|
|
[ |
198
|
|
|
self._extract_layers[idx]( |
199
|
|
|
inputs=decoded[self._extract_max_level - level] |
200
|
|
|
) |
201
|
|
|
for idx, level in enumerate(self._extract_levels) |
202
|
|
|
], |
203
|
|
|
axis=5, |
204
|
|
|
), |
205
|
|
|
axis=5, |
206
|
|
|
) |
207
|
|
|
|
208
|
|
|
if self.resize: |
209
|
|
|
output = self.resize(output) |
210
|
|
|
output = self.interpolate(output) |
211
|
|
|
|
212
|
|
|
return output |
213
|
|
|
|