1
|
|
|
import os |
2
|
|
|
import shutil |
3
|
|
|
import tarfile |
4
|
|
|
import zipfile |
5
|
|
|
from os import listdir, makedirs, remove |
6
|
|
|
from os.path import exists, join |
7
|
|
|
|
8
|
|
|
import nibabel as nib |
9
|
|
|
import numpy as np |
10
|
|
|
from tensorflow.keras.utils import get_file |
11
|
|
|
|
12
|
|
|
############## |
13
|
|
|
# Parameters # |
14
|
|
|
############## |
15
|
|
|
|
16
|
|
|
data_splits = ["train", "test"] |
17
|
|
|
num_labels = 3 |
18
|
|
|
|
19
|
|
|
# Main project directory |
20
|
|
|
main_path = os.getcwd() |
21
|
|
|
os.chdir(main_path) |
22
|
|
|
|
23
|
|
|
# Demo directory |
24
|
|
|
project_dir = "demos/unpaired_mr_brain" |
25
|
|
|
os.chdir(join(main_path, project_dir)) |
26
|
|
|
|
27
|
|
|
# Data storage directory |
28
|
|
|
data_folder_name = "dataset" |
29
|
|
|
path_to_data_folder = join(main_path, project_dir, data_folder_name) |
30
|
|
|
if os.path.exists(path_to_data_folder): |
31
|
|
|
shutil.rmtree(path_to_data_folder) |
32
|
|
|
os.mkdir(path_to_data_folder) |
33
|
|
|
|
34
|
|
|
# Pretrained model storage directory |
35
|
|
|
model_folder_name = join(project_dir, data_folder_name, "pretrained") |
36
|
|
|
path_to_model_folder = join(main_path, model_folder_name) |
37
|
|
|
|
38
|
|
|
################# |
39
|
|
|
# Download data # |
40
|
|
|
################# |
41
|
|
|
# Data |
42
|
|
|
FILENAME = "data_mr_brain" |
43
|
|
|
ORIGIN = "https://github.com/acasamitjana/Data/raw/master/L2R_Task4_HippocampusMRI.tar" |
44
|
|
|
TAR_FILE = FILENAME + ".tar" |
45
|
|
|
|
46
|
|
|
get_file(os.path.abspath(TAR_FILE), ORIGIN) |
47
|
|
|
|
48
|
|
|
if exists(path_to_data_folder) is not True: |
49
|
|
|
makedirs(path_to_data_folder) |
50
|
|
|
|
51
|
|
|
with tarfile.open(join(main_path, project_dir, TAR_FILE), "r") as tar_ref: |
52
|
|
|
tar_ref.extractall(data_folder_name) |
53
|
|
|
|
54
|
|
|
remove(TAR_FILE) |
55
|
|
|
print("Files unzipped successfully") |
56
|
|
|
|
57
|
|
|
# Model |
58
|
|
|
PRETRAINED_MODEL = "unpaired_mr_brain.zip" |
59
|
|
|
URL_MODEL = ( |
60
|
|
|
"https://github.com/DeepRegNet/deepreg-model-zoo/raw/master/" + PRETRAINED_MODEL |
61
|
|
|
) |
62
|
|
|
|
63
|
|
|
get_file(os.path.abspath(PRETRAINED_MODEL), URL_MODEL) |
64
|
|
|
|
65
|
|
|
if exists(path_to_model_folder) is not True: |
66
|
|
|
makedirs(path_to_model_folder) |
67
|
|
|
|
68
|
|
|
with zipfile.ZipFile(join(main_path, project_dir, PRETRAINED_MODEL), "r") as zip_ref: |
69
|
|
|
zip_ref.extractall(path_to_model_folder) |
70
|
|
|
|
71
|
|
|
remove(PRETRAINED_MODEL) |
72
|
|
|
print("The file ", PRETRAINED_MODEL, " has successfully been downloaded!") |
73
|
|
|
|
74
|
|
|
################## |
75
|
|
|
# Create dataset # |
76
|
|
|
################## |
77
|
|
|
path_to_init_img = join(path_to_data_folder, "Training", "img") |
78
|
|
|
path_to_init_label = join(path_to_data_folder, "Training", "label") |
79
|
|
|
|
80
|
|
|
path_to_train = join(path_to_data_folder, "train") |
81
|
|
|
path_to_test = join(path_to_data_folder, "test") |
82
|
|
|
|
83
|
|
|
if not exists(path_to_train): |
84
|
|
|
makedirs(join(path_to_train, "images")) |
85
|
|
|
makedirs(join(path_to_train, "labels")) |
86
|
|
|
makedirs(join(path_to_train, "masks")) |
87
|
|
|
else: |
88
|
|
|
shutil.rmtree(path_to_train) |
89
|
|
|
makedirs(join(path_to_train, "images")) |
90
|
|
|
makedirs(join(path_to_train, "labels")) |
91
|
|
|
makedirs(join(path_to_train, "masks")) |
92
|
|
|
|
93
|
|
|
if not exists(path_to_test): |
94
|
|
|
makedirs(join(path_to_test, "images")) |
95
|
|
|
makedirs(join(path_to_test, "labels")) |
96
|
|
|
makedirs(join(path_to_test, "masks")) |
97
|
|
|
shutil.rmtree(path_to_test) |
98
|
|
|
makedirs(join(path_to_test, "images")) |
99
|
|
|
makedirs(join(path_to_test, "labels")) |
100
|
|
|
makedirs(join(path_to_test, "masks")) |
101
|
|
|
|
102
|
|
|
img_files = listdir(path_to_init_img) |
103
|
|
|
for f in img_files: |
104
|
|
|
num_subject = int(f.split("_")[1].split(".")[0]) |
105
|
|
|
|
106
|
|
|
if num_subject < 311: |
107
|
|
|
shutil.copy(join(path_to_init_img, f), join(path_to_train, "images")) |
108
|
|
|
else: |
109
|
|
|
shutil.copy(join(path_to_init_img, f), join(path_to_test, "images")) |
110
|
|
|
|
111
|
|
|
img_files = listdir(path_to_init_label) |
112
|
|
|
for f in img_files: |
113
|
|
|
num_subject = int(f.split("_")[1].split(".")[0]) |
114
|
|
|
if num_subject < 311: |
115
|
|
|
shutil.copy(join(path_to_init_label, f), join(path_to_train, "labels")) |
116
|
|
|
else: |
117
|
|
|
shutil.copy(join(path_to_init_label, f), join(path_to_test, "labels")) |
118
|
|
|
|
119
|
|
|
shutil.rmtree(join(path_to_data_folder, "Training")) |
120
|
|
|
print("Files succesfully copied to " + path_to_train + " and " + path_to_test) |
121
|
|
|
|
122
|
|
|
################# |
123
|
|
|
# Preprocessing # |
124
|
|
|
################# |
125
|
|
|
for ds in data_splits: |
126
|
|
|
path = join(path_to_data_folder, ds, "images") |
127
|
|
|
files = listdir(path) |
128
|
|
|
for f in files: |
129
|
|
|
proxy = nib.load(join(path, f)) |
130
|
|
|
data = np.asarray(proxy.dataobj) |
131
|
|
|
mask = np.zeros_like(data) |
132
|
|
|
center = [int(s / 2) for s in data.shape] |
133
|
|
|
mask_tuple = [] |
134
|
|
|
axes = [2, 0, 1] |
135
|
|
|
for it_dim in range(len(data.shape)): |
136
|
|
|
dim = data.shape[it_dim] |
137
|
|
|
axes = [np.mod(a + 1, 3) for a in axes] |
138
|
|
|
data_tmp = np.transpose(data, axes=axes) |
139
|
|
|
|
140
|
|
|
it_voxel_init = 0 |
141
|
|
|
values_init = data_tmp[it_voxel_init, center[it_dim]] |
142
|
|
|
while True: |
143
|
|
|
it_voxel_init += 1 |
144
|
|
|
values = data_tmp[it_voxel_init, center[it_dim]] |
145
|
|
|
if np.sum((values - values_init) ** 2) > 0: |
146
|
|
|
break |
147
|
|
|
|
148
|
|
|
it_voxel_fi = dim - 1 |
149
|
|
|
values_fi = data_tmp[it_voxel_fi, center[it_dim]] |
150
|
|
|
while True: |
151
|
|
|
it_voxel_fi -= 1 |
152
|
|
|
values = data_tmp[it_voxel_fi, center[it_dim]] |
153
|
|
|
if np.sum((values - values_fi) ** 2) > 1: |
154
|
|
|
it_voxel_fi += 1 |
155
|
|
|
break |
156
|
|
|
|
157
|
|
|
mask_tuple.append((it_voxel_init, it_voxel_fi)) |
158
|
|
|
|
159
|
|
|
mask[ |
160
|
|
|
mask_tuple[0][0] : mask_tuple[0][1], |
161
|
|
|
mask_tuple[1][0] : mask_tuple[1][1], |
162
|
|
|
mask_tuple[2][0] : mask_tuple[2][1], |
163
|
|
|
] = 1 |
164
|
|
|
img = nib.Nifti1Image(mask, affine=proxy.affine) |
165
|
|
|
nib.save(img, join(path_to_data_folder, ds, "masks", f)) |
166
|
|
|
|
167
|
|
|
data = data * mask |
168
|
|
|
M = np.max(data) |
169
|
|
|
m = np.min(data) |
170
|
|
|
if M > 255: |
171
|
|
|
data = (data - m) / (M - m) * 255.0 |
172
|
|
|
img = nib.Nifti1Image(data, affine=proxy.affine) |
173
|
|
|
nib.save(img, join(path, f)) |
174
|
|
|
|
175
|
|
|
print("Images have been correctly normalized between [0, 255]") |
176
|
|
|
|
177
|
|
|
# One hot encoding labels labels |
178
|
|
|
for ds in data_splits: |
179
|
|
|
path = join(path_to_data_folder, ds, "labels") |
180
|
|
|
files = listdir(path) |
181
|
|
|
for f in files: |
182
|
|
|
proxy = nib.load(join(path, f)) |
183
|
|
|
labels = np.asarray(proxy.dataobj) |
184
|
|
|
labels_one_hot = [] |
185
|
|
|
for it_l in range(1, num_labels): |
186
|
|
|
index_labels = np.where(labels == it_l) |
187
|
|
|
mask = np.zeros_like(labels) |
188
|
|
|
mask[index_labels] = 1 |
189
|
|
|
labels_one_hot.append(mask) |
190
|
|
|
labels_one_hot = np.stack(labels_one_hot, axis=-1) |
191
|
|
|
img = nib.Nifti1Image(labels_one_hot, proxy.affine) |
192
|
|
|
nib.save(img, join(path, f)) |
193
|
|
|
|
194
|
|
|
print( |
195
|
|
|
"Labels have been one-hot encoding using a total of " + str(num_labels) + " labels." |
196
|
|
|
) |
197
|
|
|
|