|
1
|
|
|
import os |
|
2
|
|
|
import shutil |
|
3
|
|
|
import tarfile |
|
4
|
|
|
import zipfile |
|
5
|
|
|
from os import listdir, makedirs, remove |
|
6
|
|
|
from os.path import exists, join |
|
7
|
|
|
|
|
8
|
|
|
import nibabel as nib |
|
9
|
|
|
import numpy as np |
|
10
|
|
|
from tensorflow.keras.utils import get_file |
|
11
|
|
|
|
|
12
|
|
|
############## |
|
13
|
|
|
# Parameters # |
|
14
|
|
|
############## |
|
15
|
|
|
|
|
16
|
|
|
data_splits = ["train", "test"] |
|
17
|
|
|
num_labels = 3 |
|
18
|
|
|
|
|
19
|
|
|
# Main project directory |
|
20
|
|
|
main_path = os.getcwd() |
|
21
|
|
|
os.chdir(main_path) |
|
22
|
|
|
|
|
23
|
|
|
# Demo directory |
|
24
|
|
|
project_dir = "demos/unpaired_mr_brain" |
|
25
|
|
|
os.chdir(join(main_path, project_dir)) |
|
26
|
|
|
|
|
27
|
|
|
# Data storage directory |
|
28
|
|
|
data_folder_name = "dataset" |
|
29
|
|
|
path_to_data_folder = join(main_path, project_dir, data_folder_name) |
|
30
|
|
|
if os.path.exists(path_to_data_folder): |
|
31
|
|
|
shutil.rmtree(path_to_data_folder) |
|
32
|
|
|
os.mkdir(path_to_data_folder) |
|
33
|
|
|
|
|
34
|
|
|
# Pretrained model storage directory |
|
35
|
|
|
model_folder_name = join(project_dir, data_folder_name, "pretrained") |
|
36
|
|
|
path_to_model_folder = join(main_path, model_folder_name) |
|
37
|
|
|
|
|
38
|
|
|
################# |
|
39
|
|
|
# Download data # |
|
40
|
|
|
################# |
|
41
|
|
|
# Data |
|
42
|
|
|
FILENAME = "data_mr_brain" |
|
43
|
|
|
ORIGIN = "https://github.com/acasamitjana/Data/raw/master/L2R_Task4_HippocampusMRI.tar" |
|
44
|
|
|
TAR_FILE = FILENAME + ".tar" |
|
45
|
|
|
|
|
46
|
|
|
get_file(os.path.abspath(TAR_FILE), ORIGIN) |
|
47
|
|
|
|
|
48
|
|
|
if exists(path_to_data_folder) is not True: |
|
49
|
|
|
makedirs(path_to_data_folder) |
|
50
|
|
|
|
|
51
|
|
|
with tarfile.open(join(main_path, project_dir, TAR_FILE), "r") as tar_ref: |
|
52
|
|
|
tar_ref.extractall(data_folder_name) |
|
53
|
|
|
|
|
54
|
|
|
remove(TAR_FILE) |
|
55
|
|
|
print("Files unzipped successfully") |
|
56
|
|
|
|
|
57
|
|
|
# Model |
|
58
|
|
|
PRETRAINED_MODEL = "unpaired_mr_brain.zip" |
|
59
|
|
|
URL_MODEL = ( |
|
60
|
|
|
"https://github.com/DeepRegNet/deepreg-model-zoo/raw/master/" + PRETRAINED_MODEL |
|
61
|
|
|
) |
|
62
|
|
|
|
|
63
|
|
|
get_file(os.path.abspath(PRETRAINED_MODEL), URL_MODEL) |
|
64
|
|
|
|
|
65
|
|
|
if exists(path_to_model_folder) is not True: |
|
66
|
|
|
makedirs(path_to_model_folder) |
|
67
|
|
|
|
|
68
|
|
|
with zipfile.ZipFile(join(main_path, project_dir, PRETRAINED_MODEL), "r") as zip_ref: |
|
69
|
|
|
zip_ref.extractall(path_to_model_folder) |
|
70
|
|
|
|
|
71
|
|
|
remove(PRETRAINED_MODEL) |
|
72
|
|
|
print("The file ", PRETRAINED_MODEL, " has successfully been downloaded!") |
|
73
|
|
|
|
|
74
|
|
|
################## |
|
75
|
|
|
# Create dataset # |
|
76
|
|
|
################## |
|
77
|
|
|
path_to_init_img = join(path_to_data_folder, "Training", "img") |
|
78
|
|
|
path_to_init_label = join(path_to_data_folder, "Training", "label") |
|
79
|
|
|
|
|
80
|
|
|
path_to_train = join(path_to_data_folder, "train") |
|
81
|
|
|
path_to_test = join(path_to_data_folder, "test") |
|
82
|
|
|
|
|
83
|
|
|
if not exists(path_to_train): |
|
84
|
|
|
makedirs(join(path_to_train, "images")) |
|
85
|
|
|
makedirs(join(path_to_train, "labels")) |
|
86
|
|
|
makedirs(join(path_to_train, "masks")) |
|
87
|
|
|
else: |
|
88
|
|
|
shutil.rmtree(path_to_train) |
|
89
|
|
|
makedirs(join(path_to_train, "images")) |
|
90
|
|
|
makedirs(join(path_to_train, "labels")) |
|
91
|
|
|
makedirs(join(path_to_train, "masks")) |
|
92
|
|
|
|
|
93
|
|
|
if not exists(path_to_test): |
|
94
|
|
|
makedirs(join(path_to_test, "images")) |
|
95
|
|
|
makedirs(join(path_to_test, "labels")) |
|
96
|
|
|
makedirs(join(path_to_test, "masks")) |
|
97
|
|
|
shutil.rmtree(path_to_test) |
|
98
|
|
|
makedirs(join(path_to_test, "images")) |
|
99
|
|
|
makedirs(join(path_to_test, "labels")) |
|
100
|
|
|
makedirs(join(path_to_test, "masks")) |
|
101
|
|
|
|
|
102
|
|
|
img_files = listdir(path_to_init_img) |
|
103
|
|
|
for f in img_files: |
|
104
|
|
|
num_subject = int(f.split("_")[1].split(".")[0]) |
|
105
|
|
|
|
|
106
|
|
|
if num_subject < 311: |
|
107
|
|
|
shutil.copy(join(path_to_init_img, f), join(path_to_train, "images")) |
|
108
|
|
|
else: |
|
109
|
|
|
shutil.copy(join(path_to_init_img, f), join(path_to_test, "images")) |
|
110
|
|
|
|
|
111
|
|
|
img_files = listdir(path_to_init_label) |
|
112
|
|
|
for f in img_files: |
|
113
|
|
|
num_subject = int(f.split("_")[1].split(".")[0]) |
|
114
|
|
|
if num_subject < 311: |
|
115
|
|
|
shutil.copy(join(path_to_init_label, f), join(path_to_train, "labels")) |
|
116
|
|
|
else: |
|
117
|
|
|
shutil.copy(join(path_to_init_label, f), join(path_to_test, "labels")) |
|
118
|
|
|
|
|
119
|
|
|
shutil.rmtree(join(path_to_data_folder, "Training")) |
|
120
|
|
|
print("Files succesfully copied to " + path_to_train + " and " + path_to_test) |
|
121
|
|
|
|
|
122
|
|
|
################# |
|
123
|
|
|
# Preprocessing # |
|
124
|
|
|
################# |
|
125
|
|
|
for ds in data_splits: |
|
126
|
|
|
path = join(path_to_data_folder, ds, "images") |
|
127
|
|
|
files = listdir(path) |
|
128
|
|
|
for f in files: |
|
129
|
|
|
proxy = nib.load(join(path, f)) |
|
130
|
|
|
data = np.asarray(proxy.dataobj) |
|
131
|
|
|
mask = np.zeros_like(data) |
|
132
|
|
|
center = [int(s / 2) for s in data.shape] |
|
133
|
|
|
mask_tuple = [] |
|
134
|
|
|
axes = [2, 0, 1] |
|
135
|
|
|
for it_dim in range(len(data.shape)): |
|
136
|
|
|
dim = data.shape[it_dim] |
|
137
|
|
|
axes = [np.mod(a + 1, 3) for a in axes] |
|
138
|
|
|
data_tmp = np.transpose(data, axes=axes) |
|
139
|
|
|
|
|
140
|
|
|
it_voxel_init = 0 |
|
141
|
|
|
values_init = data_tmp[it_voxel_init, center[it_dim]] |
|
142
|
|
|
while True: |
|
143
|
|
|
it_voxel_init += 1 |
|
144
|
|
|
values = data_tmp[it_voxel_init, center[it_dim]] |
|
145
|
|
|
if np.sum((values - values_init) ** 2) > 0: |
|
146
|
|
|
break |
|
147
|
|
|
|
|
148
|
|
|
it_voxel_fi = dim - 1 |
|
149
|
|
|
values_fi = data_tmp[it_voxel_fi, center[it_dim]] |
|
150
|
|
|
while True: |
|
151
|
|
|
it_voxel_fi -= 1 |
|
152
|
|
|
values = data_tmp[it_voxel_fi, center[it_dim]] |
|
153
|
|
|
if np.sum((values - values_fi) ** 2) > 1: |
|
154
|
|
|
it_voxel_fi += 1 |
|
155
|
|
|
break |
|
156
|
|
|
|
|
157
|
|
|
mask_tuple.append((it_voxel_init, it_voxel_fi)) |
|
158
|
|
|
|
|
159
|
|
|
mask[ |
|
160
|
|
|
mask_tuple[0][0] : mask_tuple[0][1], |
|
161
|
|
|
mask_tuple[1][0] : mask_tuple[1][1], |
|
162
|
|
|
mask_tuple[2][0] : mask_tuple[2][1], |
|
163
|
|
|
] = 1 |
|
164
|
|
|
img = nib.Nifti1Image(mask, affine=proxy.affine) |
|
165
|
|
|
nib.save(img, join(path_to_data_folder, ds, "masks", f)) |
|
166
|
|
|
|
|
167
|
|
|
data = data * mask |
|
168
|
|
|
M = np.max(data) |
|
169
|
|
|
m = np.min(data) |
|
170
|
|
|
if M > 255: |
|
171
|
|
|
data = (data - m) / (M - m) * 255.0 |
|
172
|
|
|
img = nib.Nifti1Image(data, affine=proxy.affine) |
|
173
|
|
|
nib.save(img, join(path, f)) |
|
174
|
|
|
|
|
175
|
|
|
print("Images have been correctly normalized between [0, 255]") |
|
176
|
|
|
|
|
177
|
|
|
# One hot encoding labels labels |
|
178
|
|
|
for ds in data_splits: |
|
179
|
|
|
path = join(path_to_data_folder, ds, "labels") |
|
180
|
|
|
files = listdir(path) |
|
181
|
|
|
for f in files: |
|
182
|
|
|
proxy = nib.load(join(path, f)) |
|
183
|
|
|
labels = np.asarray(proxy.dataobj) |
|
184
|
|
|
labels_one_hot = [] |
|
185
|
|
|
for it_l in range(1, num_labels): |
|
186
|
|
|
index_labels = np.where(labels == it_l) |
|
187
|
|
|
mask = np.zeros_like(labels) |
|
188
|
|
|
mask[index_labels] = 1 |
|
189
|
|
|
labels_one_hot.append(mask) |
|
190
|
|
|
labels_one_hot = np.stack(labels_one_hot, axis=-1) |
|
191
|
|
|
img = nib.Nifti1Image(labels_one_hot, proxy.affine) |
|
192
|
|
|
nib.save(img, join(path, f)) |
|
193
|
|
|
|
|
194
|
|
|
print( |
|
195
|
|
|
"Labels have been one-hot encoding using a total of " + str(num_labels) + " labels." |
|
196
|
|
|
) |
|
197
|
|
|
|