1
|
|
|
import logging |
2
|
|
|
import os |
3
|
|
|
import shutil |
4
|
|
|
import zipfile |
5
|
|
|
|
6
|
|
|
import nibabel as nib |
7
|
|
|
import numpy as np |
8
|
|
|
from tensorflow.keras.utils import get_file |
9
|
|
|
from tqdm import tqdm |
10
|
|
|
|
11
|
|
|
DOWNLOAD_FULL_DATA = False |
12
|
|
|
DATA_PATH = "dataset" |
13
|
|
|
main_path = os.getcwd() |
14
|
|
|
|
15
|
|
|
project_dir = os.path.join(main_path, r"demos/paired_mrus_brain") |
16
|
|
|
os.chdir(project_dir) |
17
|
|
|
|
18
|
|
|
######## PARTIAL PREPROCESSED DATA DOWNLOAD (COMMENT OUT) ######## |
19
|
|
|
# Please comment out this code block if full data needs to be used |
20
|
|
|
url = "https://github.com/ucl-candi/dataset_resect/archive/master.zip" |
21
|
|
|
fname = "dataset.zip" |
22
|
|
|
get_file(os.path.join(os.getcwd(), fname), url) |
23
|
|
|
|
24
|
|
|
# unzip to a temporary folder |
25
|
|
|
tmp_folder = "dataset_tmp" |
26
|
|
|
with zipfile.ZipFile(fname, "r") as zip_ref: |
27
|
|
|
zip_ref.extractall(tmp_folder) |
28
|
|
|
|
29
|
|
|
if os.path.exists(DATA_PATH): |
30
|
|
|
shutil.rmtree(DATA_PATH) |
31
|
|
|
os.mkdir(DATA_PATH) |
32
|
|
|
|
33
|
|
|
# move needed data |
34
|
|
|
shutil.move( |
35
|
|
|
os.path.join(tmp_folder, "dataset_resect-master", "paired_mr_us_brain", "test"), |
36
|
|
|
os.path.join("dataset", "test"), |
37
|
|
|
) |
38
|
|
|
shutil.move( |
39
|
|
|
os.path.join(tmp_folder, "dataset_resect-master", "paired_mr_us_brain", "train"), |
40
|
|
|
os.path.join("dataset", "train"), |
41
|
|
|
) |
42
|
|
|
|
43
|
|
|
# remove temporary folder |
44
|
|
|
os.remove(fname) |
45
|
|
|
shutil.rmtree(tmp_folder) |
46
|
|
|
|
47
|
|
|
######## DOWNLOAD MODEL CKPT FROM MODEL ZOO ######## |
48
|
|
|
url = "https://github.com/DeepRegNet/deepreg-model-zoo/raw/master/paired_mrus_brain_demo_logs.zip" |
49
|
|
|
fname = "pretrained.zip" |
50
|
|
|
get_file(os.path.join(os.getcwd(), fname), url) |
51
|
|
|
|
52
|
|
|
with zipfile.ZipFile(fname, "r") as zip_ref: |
53
|
|
|
zip_ref.extractall(os.path.join("dataset", "pretrained")) |
54
|
|
|
|
55
|
|
|
# remove pretrained.zip |
56
|
|
|
os.remove(fname) |
57
|
|
|
|
58
|
|
|
# download full data |
59
|
|
|
if not DOWNLOAD_FULL_DATA: |
60
|
|
|
exit() |
61
|
|
|
logging.warning("Code for downloading full data is not tested.") |
62
|
|
|
|
63
|
|
|
if os.path.exists("dataset_resect") is not True: |
64
|
|
|
os.mkdir("dataset_resect") |
65
|
|
|
os.mkdir(r"dataset_resect/paired_mr_us_brain") |
66
|
|
|
url = "https://ns9999k.webs.sigma2.no/10.11582_2020.00025/EASY-RESECT.zip" |
67
|
|
|
fname = "EASY-RESECT.zip" |
68
|
|
|
path_to_zip_file = "dataset_resect" |
69
|
|
|
get_file(os.path.join(os.getcwd(), path_to_zip_file, fname), url) |
70
|
|
|
with zipfile.ZipFile(os.path.join(path_to_zip_file, fname), "r") as zip_ref: |
71
|
|
|
zip_ref.extractall(os.path.join(path_to_zip_file, "paired_mr_us_brain")) |
72
|
|
|
path_to_nifti = os.path.join( |
73
|
|
|
path_to_zip_file, "paired_mr_us_brain", "EASY-RESECT", "NIFTI" |
74
|
|
|
) |
75
|
|
|
all_folders = os.listdir(path_to_nifti) |
76
|
|
|
for folder in all_folders: |
77
|
|
|
source = os.path.join(path_to_nifti, folder) |
78
|
|
|
destination = "dataset_resect/paired_mr_us_brain" |
79
|
|
|
shutil.move(source, destination) |
80
|
|
|
print("Files restructured!") |
81
|
|
|
test_ratio = 0.25 |
82
|
|
|
path_to_data = "dataset_resect/paired_mr_us_brain" |
83
|
|
|
cases_list = os.listdir(path_to_data) |
84
|
|
|
os.mkdir(os.path.join(path_to_data, "test")) |
85
|
|
|
os.mkdir(os.path.join(path_to_data, "train")) |
86
|
|
|
num_test = round(len(cases_list) * test_ratio) |
87
|
|
|
for folder in cases_list[:num_test]: |
88
|
|
|
source = os.path.join(path_to_data, folder) |
89
|
|
|
destination = os.path.join(path_to_data, "test") |
90
|
|
|
shutil.move(source, destination) |
91
|
|
|
for folder in cases_list[num_test:]: |
92
|
|
|
source = os.path.join(path_to_data, folder) |
93
|
|
|
destination = os.path.join(path_to_data, "train") |
94
|
|
|
shutil.move(source, destination) |
95
|
|
|
folders = os.listdir(path_to_data) |
96
|
|
|
for folder in folders: |
97
|
|
|
sub_folders = os.listdir(os.path.join(path_to_data, folder)) |
98
|
|
|
for sub_folder in tqdm(sub_folders): |
99
|
|
|
if "DS_St" in sub_folder: |
100
|
|
|
os.remove(os.path.join(path_to_data, folder, sub_folder)) |
101
|
|
|
else: |
102
|
|
|
files = os.listdir(os.path.join(path_to_data, folder, sub_folder)) |
103
|
|
|
for file in files: |
104
|
|
|
if "T1" in file: |
105
|
|
|
arr = nib.load( |
106
|
|
|
os.path.join(path_to_data, folder, sub_folder, file) |
107
|
|
|
).get_data() |
108
|
|
|
img = nib.Nifti1Image(arr, affine=np.eye(4)) |
109
|
|
|
img.to_filename( |
110
|
|
|
os.path.join( |
111
|
|
|
path_to_data, |
112
|
|
|
folder, |
113
|
|
|
sub_folder, |
114
|
|
|
file.split(".nii")[0] + "_resized.nii.gz", |
115
|
|
|
) |
116
|
|
|
) |
117
|
|
|
elif "US" in file: |
118
|
|
|
img = nib.load(os.path.join(path_to_data, folder, sub_folder, file)) |
119
|
|
|
nib.save( |
120
|
|
|
img, |
121
|
|
|
os.path.join( |
122
|
|
|
path_to_data, |
123
|
|
|
folder, |
124
|
|
|
sub_folder, |
125
|
|
|
file.split(".ni")[0] + ".nii.gz", |
126
|
|
|
), |
127
|
|
|
) |
128
|
|
|
shutil.rmtree(r"dataset_resect/paired_mr_us_brain/train/EASY-RESECT") |
129
|
|
|
shutil.rmtree(r"dataset_resect/paired_mr_us_brain/train/__MACOSX") |
130
|
|
|
|
131
|
|
|
# Preprocess the downloaded data |
132
|
|
|
if os.path.exists("dataset_resect/README.md"): |
133
|
|
|
os.remove("dataset_resect/README.md") |
134
|
|
|
|
135
|
|
|
data_folder = "dataset_resect/paired_mr_us_brain" |
136
|
|
|
folders = os.listdir(os.path.join(project_dir, data_folder)) |
137
|
|
|
|
138
|
|
|
# Move files into correct directories |
139
|
|
|
for folder in folders: |
140
|
|
|
sub_folders = os.listdir(os.path.join(project_dir, data_folder, folder)) |
141
|
|
|
if ( |
142
|
|
|
os.path.exists(os.path.join(project_dir, data_folder, folder, "fixed_images")) |
143
|
|
|
is not True |
144
|
|
|
): |
145
|
|
|
os.mkdir(os.path.join(project_dir, data_folder, folder, "fixed_images")) |
146
|
|
|
os.mkdir(os.path.join(project_dir, data_folder, folder, "moving_images")) |
147
|
|
|
for sub_folder in sub_folders: |
148
|
|
|
files = os.listdir(os.path.join(project_dir, data_folder, folder, sub_folder)) |
149
|
|
|
for file in files: |
150
|
|
|
if "T1" in file: |
151
|
|
|
source = os.path.join( |
152
|
|
|
project_dir, data_folder, folder, sub_folder, file |
153
|
|
|
) |
154
|
|
|
destination = os.path.join( |
155
|
|
|
project_dir, data_folder, folder, "fixed_images", file |
156
|
|
|
) |
157
|
|
|
shutil.move(source, destination) |
158
|
|
|
elif "US" in file: |
159
|
|
|
source = os.path.join( |
160
|
|
|
project_dir, data_folder, folder, sub_folder, file |
161
|
|
|
) |
162
|
|
|
destination = os.path.join( |
163
|
|
|
project_dir, data_folder, folder, "moving_images", file |
164
|
|
|
) |
165
|
|
|
shutil.move(source, destination) |
166
|
|
|
|
167
|
|
|
print("Files moved into correct directories") |
168
|
|
|
|
169
|
|
|
# Remove unused files |
170
|
|
|
for folder in folders: |
171
|
|
|
sub_folders = os.listdir(os.path.join(project_dir, data_folder, folder)) |
172
|
|
|
for sub_folder in sub_folders: |
173
|
|
|
if "Case" in sub_folder: |
174
|
|
|
shutil.rmtree(os.path.join(project_dir, data_folder, folder, sub_folder)) |
175
|
|
|
print("Unused files removed") |
176
|
|
|
|
177
|
|
|
# Rename files to match names |
178
|
|
|
for folder in folders: |
179
|
|
|
sub_folders = os.listdir(os.path.join(project_dir, data_folder, folder)) |
180
|
|
|
for sub_folder in sub_folders: |
181
|
|
|
files = os.listdir(os.path.join(project_dir, data_folder, folder, sub_folder)) |
182
|
|
|
for file in files: |
183
|
|
|
source = os.path.join(project_dir, data_folder, folder, sub_folder, file) |
184
|
|
|
destination = os.path.join( |
185
|
|
|
project_dir, |
186
|
|
|
data_folder, |
187
|
|
|
folder, |
188
|
|
|
sub_folder, |
189
|
|
|
file.split("-")[0] + ".nii.gz", |
190
|
|
|
) |
191
|
|
|
im = nib.load(source) |
192
|
|
|
nib.save(im, destination) |
193
|
|
|
os.remove(source) |
194
|
|
|
print("files renamed to match each other") |
195
|
|
|
|
196
|
|
|
# Rescale images |
197
|
|
|
c = 0 |
198
|
|
|
for folder in folders: |
199
|
|
|
sub_folders = os.listdir(os.path.join(project_dir, data_folder, folder)) |
200
|
|
|
for sub_folder in sub_folders: |
201
|
|
|
files = os.listdir(os.path.join(project_dir, data_folder, folder, sub_folder)) |
202
|
|
|
for file in files: |
203
|
|
|
try: |
204
|
|
|
if "fixed" in sub_folder: |
205
|
|
|
im_data = np.asarray( |
206
|
|
|
nib.load( |
207
|
|
|
os.path.join( |
208
|
|
|
project_dir, data_folder, folder, sub_folder, file |
209
|
|
|
) |
210
|
|
|
).dataobj, |
211
|
|
|
dtype=np.float32, |
212
|
|
|
) |
213
|
|
|
|
214
|
|
|
im_data = ((im_data + 150) / (1700 + 150)) * 255.0 # rescale image |
215
|
|
|
|
216
|
|
|
img = nib.Nifti1Image(im_data, affine=None) |
217
|
|
|
nib.save( |
218
|
|
|
img, |
219
|
|
|
os.path.join( |
220
|
|
|
project_dir, data_folder, folder, sub_folder, file |
221
|
|
|
), |
222
|
|
|
) |
223
|
|
|
img = nib.load( |
224
|
|
|
os.path.join( |
225
|
|
|
project_dir, data_folder, folder, "moving_images", file |
226
|
|
|
) |
227
|
|
|
) |
228
|
|
|
except nib.filebasedimages.ImageFileError: |
229
|
|
|
os.remove( |
230
|
|
|
os.path.join(project_dir, data_folder, folder, "fixed_images", file) |
231
|
|
|
) |
232
|
|
|
os.remove( |
233
|
|
|
os.path.join( |
234
|
|
|
project_dir, data_folder, folder, "moving_images", file |
235
|
|
|
) |
236
|
|
|
) |
237
|
|
|
c = c + 1 |
238
|
|
|
print("Images rescaled") |
239
|
|
|
print("All done!") |
240
|
|
|
print("Number of files removed due to not loading properly:", c) |
241
|
|
|
|