1
|
|
|
# coding=utf-8 |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
Tests for deepreg/dataset/loader/interface.py |
5
|
|
|
""" |
6
|
|
|
from test.unit.util import is_equal_np |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import pytest |
10
|
|
|
|
11
|
|
|
from deepreg.dataset.loader.interface import ( |
12
|
|
|
AbstractPairedDataLoader, |
13
|
|
|
AbstractUnpairedDataLoader, |
14
|
|
|
DataLoader, |
15
|
|
|
FileLoader, |
16
|
|
|
GeneratorDataLoader, |
17
|
|
|
) |
18
|
|
|
from deepreg.dataset.loader.nifti_loader import NiftiFileLoader |
19
|
|
|
from deepreg.dataset.loader.paired_loader import PairedDataLoader |
20
|
|
|
from deepreg.dataset.loader.util import normalize_array |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
class TestDataLoader: |
|
|
|
|
24
|
|
|
@pytest.mark.parametrize( |
25
|
|
|
"labeled,num_indices,sample_label,seed", |
26
|
|
|
[ |
27
|
|
|
(True, 1, "all", 0), |
28
|
|
|
(False, 1, "all", 0), |
29
|
|
|
(None, 1, "all", 0), |
30
|
|
|
(True, 1, "sample", 0), |
31
|
|
|
(True, 1, "all", 0), |
32
|
|
|
(True, 1, None, 0), |
33
|
|
|
(True, 1, "sample", None), |
34
|
|
|
], |
|
|
|
|
35
|
|
|
) |
36
|
|
|
def test_init(self, labeled, num_indices, sample_label, seed): |
37
|
|
|
""" |
38
|
|
|
Test init function of DataLoader class |
39
|
|
|
:param labeled: bool |
40
|
|
|
:param num_indices: int |
41
|
|
|
:param sample_label: str |
42
|
|
|
:param seed: float/int/None |
43
|
|
|
:return: |
44
|
|
|
""" |
45
|
|
|
DataLoader( |
46
|
|
|
labeled=labeled, |
47
|
|
|
num_indices=num_indices, |
48
|
|
|
sample_label=sample_label, |
49
|
|
|
seed=seed, |
50
|
|
|
) |
51
|
|
|
|
52
|
|
|
data_loader = DataLoader( |
53
|
|
|
labeled=labeled, |
54
|
|
|
num_indices=num_indices, |
55
|
|
|
sample_label=sample_label, |
56
|
|
|
seed=seed, |
57
|
|
|
) |
58
|
|
|
|
59
|
|
|
with pytest.raises(NotImplementedError): |
60
|
|
|
data_loader.moving_image_shape |
|
|
|
|
61
|
|
|
with pytest.raises(NotImplementedError): |
62
|
|
|
data_loader.fixed_image_shape |
|
|
|
|
63
|
|
|
with pytest.raises(NotImplementedError): |
64
|
|
|
data_loader.num_samples |
|
|
|
|
65
|
|
|
with pytest.raises(NotImplementedError): |
66
|
|
|
data_loader.get_dataset() |
67
|
|
|
|
68
|
|
|
data_loader.close() |
69
|
|
|
|
70
|
|
|
@pytest.mark.parametrize( |
71
|
|
|
"labeled,moving_shape,fixed_shape,batch_size,data_augmentation", |
72
|
|
|
[ |
73
|
|
|
(True, (9, 9, 9), (9, 9, 9), 1, {}), |
74
|
|
|
( |
75
|
|
|
True, |
76
|
|
|
(9, 9, 9), |
77
|
|
|
(15, 15, 15), |
78
|
|
|
1, |
79
|
|
|
{"data_augmentation": {"name": "affine"}}, |
80
|
|
|
), |
81
|
|
|
( |
82
|
|
|
True, |
83
|
|
|
(9, 9, 9), |
84
|
|
|
(15, 15, 15), |
85
|
|
|
1, |
86
|
|
|
{ |
87
|
|
|
"data_augmentation": [ |
88
|
|
|
{"name": "affine"}, |
89
|
|
|
{ |
90
|
|
|
"name": "ddf", |
91
|
|
|
"field_strength": 1, |
92
|
|
|
"low_res_size": (3, 3, 3), |
93
|
|
|
}, |
|
|
|
|
94
|
|
|
], |
95
|
|
|
}, |
96
|
|
|
), |
97
|
|
|
], |
98
|
|
|
) |
99
|
|
|
def test_get_dataset_and_preprocess( |
100
|
|
|
self, labeled, moving_shape, fixed_shape, batch_size, data_augmentation |
|
|
|
|
101
|
|
|
): |
102
|
|
|
""" |
103
|
|
|
Test get_transforms() function. For that, an Abstract Data Loader is created |
104
|
|
|
only to set the moving and fixed shapes that are used in get_transforms(). |
105
|
|
|
Here we test that the get_transform() returns a function and the shape of |
106
|
|
|
the output of this function. See test_preprocess.py for more testing regarding |
107
|
|
|
the concrete params. |
108
|
|
|
|
109
|
|
|
:param labeled: bool |
110
|
|
|
:param moving_shape: tuple |
111
|
|
|
:param fixed_shape: tuple |
112
|
|
|
:param batch_size: int |
113
|
|
|
:param data_augmentation: dict |
114
|
|
|
:return: |
115
|
|
|
""" |
116
|
|
|
data_dir_path = [ |
117
|
|
|
"data/test/nifti/paired/train", |
118
|
|
|
"data/test/nifti/paired/test", |
119
|
|
|
] |
120
|
|
|
common_args = dict( |
121
|
|
|
file_loader=NiftiFileLoader, labeled=True, sample_label="all", seed=None |
122
|
|
|
) |
123
|
|
|
|
124
|
|
|
data_loader = PairedDataLoader( |
125
|
|
|
data_dir_paths=data_dir_path, |
126
|
|
|
fixed_image_shape=fixed_shape, |
127
|
|
|
moving_image_shape=moving_shape, |
128
|
|
|
**common_args, |
129
|
|
|
) |
130
|
|
|
|
131
|
|
|
dataset = data_loader.get_dataset_and_preprocess( |
132
|
|
|
training=True, |
133
|
|
|
batch_size=batch_size, |
134
|
|
|
repeat=True, |
135
|
|
|
shuffle_buffer_num_batch=1, |
136
|
|
|
**data_augmentation, |
137
|
|
|
) |
138
|
|
|
|
139
|
|
|
for outputs in dataset.take(1): |
140
|
|
|
assert ( |
141
|
|
|
outputs["moving_image"].shape |
142
|
|
|
== (batch_size,) + data_loader.moving_image_shape |
143
|
|
|
) |
144
|
|
|
assert ( |
145
|
|
|
outputs["fixed_image"].shape |
146
|
|
|
== (batch_size,) + data_loader.fixed_image_shape |
147
|
|
|
) |
148
|
|
|
assert ( |
149
|
|
|
outputs["moving_label"].shape |
150
|
|
|
== (batch_size,) + data_loader.moving_image_shape |
151
|
|
|
) |
152
|
|
|
assert ( |
153
|
|
|
outputs["fixed_label"].shape |
154
|
|
|
== (batch_size,) + data_loader.fixed_image_shape |
155
|
|
|
) |
156
|
|
|
|
157
|
|
|
|
158
|
|
|
def test_abstract_paired_data_loader(): |
159
|
|
|
""" |
160
|
|
|
Test the functions in AbstractPairedDataLoader |
161
|
|
|
""" |
162
|
|
|
moving_image_shape = (8, 8, 4) |
163
|
|
|
fixed_image_shape = (6, 6, 4) |
164
|
|
|
|
165
|
|
|
# test init invalid shape |
166
|
|
|
with pytest.raises(ValueError) as err_info: |
167
|
|
|
AbstractPairedDataLoader( |
168
|
|
|
moving_image_shape=(2, 2), |
169
|
|
|
fixed_image_shape=(3, 3), |
170
|
|
|
labeled=True, |
171
|
|
|
sample_label="sample", |
172
|
|
|
) |
173
|
|
|
assert "moving_image_shape and fixed_image_shape have length of three" in str( |
174
|
|
|
err_info.value |
175
|
|
|
) |
176
|
|
|
|
177
|
|
|
# test init valid shapes |
178
|
|
|
data_loader = AbstractPairedDataLoader( |
179
|
|
|
moving_image_shape=moving_image_shape, |
180
|
|
|
fixed_image_shape=fixed_image_shape, |
181
|
|
|
labeled=True, |
182
|
|
|
sample_label="sample", |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
# test properties |
186
|
|
|
assert data_loader.num_indices == 2 |
187
|
|
|
assert data_loader.moving_image_shape == moving_image_shape |
188
|
|
|
assert data_loader.fixed_image_shape == fixed_image_shape |
189
|
|
|
assert data_loader.num_samples is None |
190
|
|
|
|
191
|
|
|
|
192
|
|
|
def test_abstract_unpaired_data_loader(): |
193
|
|
|
""" |
194
|
|
|
Test the functions in AbstractUnpairedDataLoader |
195
|
|
|
""" |
196
|
|
|
image_shape = (8, 8, 4) |
197
|
|
|
|
198
|
|
|
# test init invalid shape |
199
|
|
|
with pytest.raises(ValueError) as err_info: |
200
|
|
|
AbstractUnpairedDataLoader( |
201
|
|
|
image_shape=(2, 2), labeled=True, sample_label="sample" |
202
|
|
|
) |
203
|
|
|
assert "image_shape has to be length of three" in str(err_info.value) |
204
|
|
|
|
205
|
|
|
# test init valid shapes |
206
|
|
|
data_loader = AbstractUnpairedDataLoader( |
207
|
|
|
image_shape=image_shape, labeled=True, sample_label="sample" |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
# test properties |
211
|
|
|
assert data_loader.num_indices == 3 |
212
|
|
|
assert data_loader.moving_image_shape == image_shape |
213
|
|
|
assert data_loader.fixed_image_shape == image_shape |
214
|
|
|
assert data_loader.num_samples is None |
215
|
|
|
|
216
|
|
|
|
217
|
|
|
def test_generator_data_loader(caplog): |
|
|
|
|
218
|
|
|
""" |
219
|
|
|
Test the functions in GeneratorDataLoader |
220
|
|
|
:param caplog: used to check warning message. |
221
|
|
|
""" |
222
|
|
|
generator = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
223
|
|
|
|
224
|
|
|
# test properties |
225
|
|
|
assert generator.loader_moving_image is None |
226
|
|
|
assert generator.loader_moving_image is None |
227
|
|
|
assert generator.loader_moving_image is None |
228
|
|
|
assert generator.loader_moving_image is None |
229
|
|
|
|
230
|
|
|
# not implemented properties / functions |
231
|
|
|
with pytest.raises(NotImplementedError): |
232
|
|
|
generator.sample_index_generator() |
233
|
|
|
|
234
|
|
|
# implemented functions |
235
|
|
|
# test get_Dataset |
236
|
|
|
dummy_array = np.random.random(size=(100, 100, 100)).astype(np.float32) |
237
|
|
|
# for unlabeled data |
238
|
|
|
# mock generator |
239
|
|
|
sequence = [ |
240
|
|
|
dict( |
241
|
|
|
moving_image=dummy_array, |
242
|
|
|
fixed_image=dummy_array, |
243
|
|
|
moving_label=dummy_array, |
244
|
|
|
fixed_label=dummy_array, |
245
|
|
|
indices=[1], |
246
|
|
|
) |
247
|
|
|
for i in range(3) |
248
|
|
|
] |
249
|
|
|
|
250
|
|
|
def mock_generator(): |
251
|
|
|
for el in sequence: |
252
|
|
|
yield el |
253
|
|
|
|
254
|
|
|
# inputs, no error means passed |
255
|
|
|
generator.data_generator = mock_generator |
256
|
|
|
dataset = generator.get_dataset() |
257
|
|
|
|
258
|
|
|
# check dataset output |
259
|
|
|
expected = dict( |
260
|
|
|
moving_image=dummy_array, |
261
|
|
|
fixed_image=dummy_array, |
262
|
|
|
moving_label=dummy_array, |
263
|
|
|
fixed_label=dummy_array, |
264
|
|
|
indices=[1], |
265
|
|
|
) |
266
|
|
|
for got in list(dataset.as_numpy_iterator()): |
267
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
|
|
|
|
268
|
|
|
|
269
|
|
|
# for unlabeled data |
270
|
|
|
generator_unlabeled = GeneratorDataLoader( |
271
|
|
|
labeled=False, num_indices=1, sample_label="all" |
272
|
|
|
) |
273
|
|
|
|
274
|
|
|
sequence = [ |
275
|
|
|
dict(moving_image=dummy_array, fixed_image=dummy_array, indices=[1]) |
276
|
|
|
for i in range(3) |
277
|
|
|
] |
278
|
|
|
|
279
|
|
|
# inputs, no error means passed |
280
|
|
|
generator_unlabeled.data_generator = mock_generator |
281
|
|
|
dataset = generator_unlabeled.get_dataset() |
282
|
|
|
|
283
|
|
|
# check dataset output |
284
|
|
|
expected = dict(moving_image=dummy_array, fixed_image=dummy_array, indices=[1]) |
285
|
|
|
for got in list(dataset.as_numpy_iterator()): |
286
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
|
|
|
|
287
|
|
|
|
288
|
|
|
# test data_generator |
289
|
|
|
# create mock data loader and sample index generator |
290
|
|
|
class MockDataLoader: |
|
|
|
|
291
|
|
|
def __init__(self, **kwargs): |
|
|
|
|
292
|
|
|
super().__init__(**kwargs) |
293
|
|
|
|
294
|
|
|
def get_data(index): |
|
|
|
|
295
|
|
|
return dummy_array |
296
|
|
|
|
297
|
|
|
def mock_sample_index_generator(): |
298
|
|
|
return [[[1], [1], [1]]] |
299
|
|
|
|
300
|
|
|
generator = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
301
|
|
|
generator.sample_index_generator = mock_sample_index_generator |
302
|
|
|
generator.loader_moving_image = MockDataLoader |
303
|
|
|
generator.loader_fixed_image = MockDataLoader |
304
|
|
|
generator.loader_moving_label = MockDataLoader |
305
|
|
|
generator.loader_fixed_label = MockDataLoader |
306
|
|
|
|
307
|
|
|
# check data generator output |
308
|
|
|
got = next(generator.data_generator()) |
309
|
|
|
|
310
|
|
|
expected = dict( |
311
|
|
|
moving_image=normalize_array(dummy_array), |
312
|
|
|
fixed_image=normalize_array(dummy_array), |
313
|
|
|
moving_label=dummy_array, |
314
|
|
|
fixed_label=dummy_array, |
315
|
|
|
indices=np.asarray([1] + [0], dtype=np.float32), |
316
|
|
|
) |
317
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
|
|
|
|
318
|
|
|
|
319
|
|
|
# test validate_images_and_labels |
320
|
|
|
with pytest.raises(ValueError) as err_info: |
321
|
|
|
generator.validate_images_and_labels( |
322
|
|
|
fixed_image=None, |
323
|
|
|
moving_image=dummy_array, |
324
|
|
|
moving_label=None, |
325
|
|
|
fixed_label=None, |
326
|
|
|
image_indices=[1], |
327
|
|
|
) |
328
|
|
|
assert "moving image and fixed image must not be None" in str(err_info.value) |
329
|
|
|
with pytest.raises(ValueError) as err_info: |
330
|
|
|
generator.validate_images_and_labels( |
331
|
|
|
fixed_image=dummy_array, |
332
|
|
|
moving_image=dummy_array, |
333
|
|
|
moving_label=dummy_array, |
334
|
|
|
fixed_label=None, |
335
|
|
|
image_indices=[1], |
336
|
|
|
) |
337
|
|
|
assert "moving label and fixed label must be both None or non-None" in str( |
338
|
|
|
err_info.value |
339
|
|
|
) |
340
|
|
|
with pytest.raises(ValueError) as err_info: |
341
|
|
|
generator.validate_images_and_labels( |
342
|
|
|
fixed_image=dummy_array, |
343
|
|
|
moving_image=dummy_array + 1.0, |
344
|
|
|
moving_label=None, |
345
|
|
|
fixed_label=None, |
346
|
|
|
image_indices=[1], |
347
|
|
|
) |
348
|
|
|
assert "Sample [1]'s moving_image's values are not between [0, 1]" in str( |
349
|
|
|
err_info.value |
350
|
|
|
) |
351
|
|
|
with pytest.raises(ValueError) as err_info: |
352
|
|
|
generator.validate_images_and_labels( |
353
|
|
|
fixed_image=dummy_array, |
354
|
|
|
moving_image=np.random.random(size=(100, 100)), |
355
|
|
|
moving_label=None, |
356
|
|
|
fixed_label=None, |
357
|
|
|
image_indices=[1], |
358
|
|
|
) |
359
|
|
|
assert "Sample [1]'s moving_image' shape should be 3D. " in str(err_info.value) |
360
|
|
|
with pytest.raises(ValueError) as err_info: |
361
|
|
|
generator.validate_images_and_labels( |
362
|
|
|
fixed_image=dummy_array, |
363
|
|
|
moving_image=dummy_array, |
364
|
|
|
moving_label=np.random.random(size=(100, 100)), |
365
|
|
|
fixed_label=dummy_array, |
366
|
|
|
image_indices=[1], |
367
|
|
|
) |
368
|
|
|
assert "Sample [1]'s moving_label' shape should be 3D or 4D. " in str( |
369
|
|
|
err_info.value |
370
|
|
|
) |
371
|
|
|
with pytest.raises(ValueError) as err_info: |
372
|
|
|
generator.validate_images_and_labels( |
373
|
|
|
fixed_image=dummy_array, |
374
|
|
|
moving_image=dummy_array, |
375
|
|
|
moving_label=np.random.random(size=(100, 100, 100, 3)), |
376
|
|
|
fixed_label=np.random.random(size=(100, 100, 100, 4)), |
377
|
|
|
image_indices=[1], |
378
|
|
|
) |
379
|
|
|
assert ( |
380
|
|
|
"Sample [1]'s moving image and fixed image have different numbers of labels." |
381
|
|
|
in str(err_info.value) |
382
|
|
|
) |
383
|
|
|
|
384
|
|
|
# warning |
385
|
|
|
caplog.clear() # clear previous log |
386
|
|
|
generator.validate_images_and_labels( |
387
|
|
|
fixed_image=dummy_array, |
388
|
|
|
moving_image=dummy_array, |
389
|
|
|
moving_label=np.random.random(size=(100, 100, 90)), |
390
|
|
|
fixed_label=dummy_array, |
391
|
|
|
image_indices=[1], |
392
|
|
|
) |
393
|
|
|
assert "Sample [1]'s moving image and label have different shapes. " in caplog.text |
394
|
|
|
caplog.clear() # clear previous log |
395
|
|
|
generator.validate_images_and_labels( |
396
|
|
|
fixed_image=dummy_array, |
397
|
|
|
moving_image=dummy_array, |
398
|
|
|
moving_label=dummy_array, |
399
|
|
|
fixed_label=np.random.random(size=(100, 100, 90)), |
400
|
|
|
image_indices=[1], |
401
|
|
|
) |
402
|
|
|
assert "Sample [1]'s fixed image and label have different shapes. " in caplog.text |
403
|
|
|
|
404
|
|
|
# test sample_image_label method |
405
|
|
|
# for unlabeled input data |
406
|
|
|
got = next( |
407
|
|
|
generator.sample_image_label( |
408
|
|
|
fixed_image=dummy_array, |
409
|
|
|
moving_image=dummy_array, |
410
|
|
|
moving_label=None, |
411
|
|
|
fixed_label=None, |
412
|
|
|
image_indices=[1], |
413
|
|
|
) |
414
|
|
|
) |
415
|
|
|
expected = dict( |
416
|
|
|
moving_image=dummy_array, |
417
|
|
|
fixed_image=dummy_array, |
418
|
|
|
indices=np.asarray([1] + [-1], dtype=np.float32), |
419
|
|
|
) |
420
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
|
|
|
|
421
|
|
|
|
422
|
|
|
# for data with one label |
423
|
|
|
got = next( |
424
|
|
|
generator.sample_image_label( |
425
|
|
|
fixed_image=dummy_array, |
426
|
|
|
moving_image=dummy_array, |
427
|
|
|
moving_label=dummy_array, |
428
|
|
|
fixed_label=dummy_array, |
429
|
|
|
image_indices=[1], |
430
|
|
|
) |
431
|
|
|
) |
432
|
|
|
expected = dict( |
433
|
|
|
moving_image=dummy_array, |
434
|
|
|
fixed_image=dummy_array, |
435
|
|
|
moving_label=dummy_array, |
436
|
|
|
fixed_label=dummy_array, |
437
|
|
|
indices=np.asarray([1] + [0], dtype=np.float32), |
438
|
|
|
) |
439
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
|
|
|
|
440
|
|
|
|
441
|
|
|
# for data with multiple labels |
442
|
|
|
dummy_labels = np.random.random(size=(100, 100, 100, 3)) |
443
|
|
|
got = generator.sample_image_label( |
444
|
|
|
fixed_image=dummy_array, |
445
|
|
|
moving_image=dummy_array, |
446
|
|
|
moving_label=dummy_labels, |
447
|
|
|
fixed_label=dummy_labels, |
448
|
|
|
image_indices=[1], |
449
|
|
|
) |
450
|
|
|
for label_index in range(dummy_labels.shape[3]): |
451
|
|
|
got_iter = next(got) |
452
|
|
|
expected = dict( |
453
|
|
|
moving_image=dummy_array, |
454
|
|
|
fixed_image=dummy_array, |
455
|
|
|
moving_label=dummy_labels[..., label_index], |
456
|
|
|
fixed_label=dummy_labels[..., label_index], |
457
|
|
|
indices=np.asarray([1] + [label_index], dtype=np.float32), |
458
|
|
|
) |
459
|
|
|
assert all(is_equal_np(got_iter[key], expected[key]) for key in expected.keys()) |
|
|
|
|
460
|
|
|
|
461
|
|
|
|
462
|
|
|
def test_file_loader(): |
463
|
|
|
""" |
464
|
|
|
Test the functions in FileLoader |
465
|
|
|
""" |
466
|
|
|
# init, no error means passed |
467
|
|
|
loader_grouped = FileLoader( |
468
|
|
|
dir_paths=["/path/grouped_loader/"], name="grouped_loader", grouped=True |
469
|
|
|
) |
470
|
|
|
loader_ungrouped = FileLoader( |
471
|
|
|
dir_paths=["/path/ungrouped_loader/"], name="ungrouped_loader", grouped=False |
472
|
|
|
) |
473
|
|
|
|
474
|
|
|
# init fails with repeated paths |
475
|
|
|
with pytest.raises(ValueError) as err_info: |
476
|
|
|
FileLoader( |
477
|
|
|
dir_paths=["/path/ungrouped_loader/", "/path/ungrouped_loader/"], |
478
|
|
|
name="ungrouped_loader", |
479
|
|
|
grouped=False, |
480
|
|
|
) |
481
|
|
|
assert "dir_paths have repeated elements" in str(err_info.value) |
482
|
|
|
|
483
|
|
|
# not implemented properties / functions |
484
|
|
|
with pytest.raises(NotImplementedError): |
485
|
|
|
loader_grouped.set_data_structure() |
486
|
|
|
with pytest.raises(NotImplementedError): |
487
|
|
|
loader_grouped.set_group_structure() |
488
|
|
|
with pytest.raises(NotImplementedError): |
489
|
|
|
loader_grouped.get_data(1) |
490
|
|
|
with pytest.raises(NotImplementedError): |
491
|
|
|
loader_grouped.get_data_ids() |
492
|
|
|
with pytest.raises(NotImplementedError): |
493
|
|
|
loader_grouped.get_num_images() |
494
|
|
|
with pytest.raises(NotImplementedError): |
495
|
|
|
loader_grouped.close() |
496
|
|
|
|
497
|
|
|
# test grouped file loader functions |
498
|
|
|
assert loader_grouped.group_struct is None |
499
|
|
|
|
500
|
|
|
# create mock group structure with nested list |
501
|
|
|
loader_grouped.group_struct = [[1, 2], [3, 4], [5, 6]] |
502
|
|
|
assert loader_grouped.get_num_groups() == 3 |
503
|
|
|
assert loader_grouped.get_num_images_per_group() == [2, 2, 2] |
504
|
|
|
with pytest.raises(ValueError) as err_info: |
505
|
|
|
loader_grouped.group_struct = [[], [3, 4], [5, 6]] |
506
|
|
|
loader_grouped.get_num_images_per_group() |
507
|
|
|
assert "Groups of ID [0, 2, 2] are empty." in str(err_info.value) |
508
|
|
|
|
509
|
|
|
# test ungrouped file loader |
510
|
|
|
assert loader_ungrouped.group_struct is None |
511
|
|
|
with pytest.raises(AssertionError): |
512
|
|
|
loader_ungrouped.get_num_groups() |
513
|
|
|
with pytest.raises(AssertionError): |
514
|
|
|
loader_ungrouped.get_num_images_per_group() |
515
|
|
|
|