|
1
|
|
|
""" |
|
2
|
|
|
Interface between the data loaders and file loaders. |
|
3
|
|
|
""" |
|
4
|
|
|
import logging |
|
5
|
|
|
from abc import ABC |
|
6
|
|
|
from typing import Dict, List, Optional, Tuple, Union |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import tensorflow as tf |
|
10
|
|
|
|
|
11
|
|
|
from deepreg.dataset.loader.util import normalize_array |
|
12
|
|
|
from deepreg.dataset.preprocess import resize_inputs |
|
13
|
|
|
from deepreg.dataset.util import get_label_indices |
|
14
|
|
|
from deepreg.registry import REGISTRY |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class DataLoader: |
|
18
|
|
|
""" |
|
19
|
|
|
loads data to feed to model. |
|
20
|
|
|
""" |
|
21
|
|
|
|
|
22
|
|
|
def __init__( |
|
23
|
|
|
self, |
|
24
|
|
|
labeled: Optional[bool], |
|
25
|
|
|
num_indices: Optional[int], |
|
26
|
|
|
sample_label: Optional[str], |
|
27
|
|
|
seed: Optional[int] = None, |
|
28
|
|
|
): |
|
29
|
|
|
""" |
|
30
|
|
|
:param labeled: bool corresponding to labels provided or omitted |
|
31
|
|
|
:param num_indices: |
|
32
|
|
|
:param sample_label: |
|
33
|
|
|
:param seed: |
|
34
|
|
|
""" |
|
35
|
|
|
assert labeled in [ |
|
36
|
|
|
True, |
|
37
|
|
|
False, |
|
38
|
|
|
None, |
|
39
|
|
|
], f"labeled must be boolean, True or False or None, got {labeled}" |
|
40
|
|
|
assert sample_label in [ |
|
41
|
|
|
"sample", |
|
42
|
|
|
"all", |
|
43
|
|
|
None, |
|
44
|
|
|
], f"sample_label must be sample, all or None, got {sample_label}" |
|
45
|
|
|
assert ( |
|
46
|
|
|
num_indices is None or num_indices >= 1 |
|
47
|
|
|
), f"num_indices must be int >=1 or None, got {num_indices}" |
|
48
|
|
|
assert seed is None or isinstance( |
|
49
|
|
|
seed, int |
|
50
|
|
|
), f"seed must be None or int, got {seed}" |
|
51
|
|
|
|
|
52
|
|
|
self.labeled = labeled |
|
53
|
|
|
self.num_indices = num_indices # number of indices to identify a sample |
|
54
|
|
|
self.sample_label = sample_label |
|
55
|
|
|
self.seed = seed # used for sampling |
|
56
|
|
|
|
|
57
|
|
|
@property |
|
58
|
|
|
def moving_image_shape(self) -> tuple: |
|
59
|
|
|
""" |
|
60
|
|
|
needs to be defined by user. |
|
61
|
|
|
""" |
|
62
|
|
|
raise NotImplementedError |
|
63
|
|
|
|
|
64
|
|
|
@property |
|
65
|
|
|
def fixed_image_shape(self) -> tuple: |
|
66
|
|
|
""" |
|
67
|
|
|
needs to be defined by user. |
|
68
|
|
|
""" |
|
69
|
|
|
raise NotImplementedError |
|
70
|
|
|
|
|
71
|
|
|
@property |
|
72
|
|
|
def num_samples(self) -> int: |
|
73
|
|
|
""" |
|
74
|
|
|
Return the number of samples in the dataset for one epoch |
|
75
|
|
|
:return: |
|
76
|
|
|
""" |
|
77
|
|
|
raise NotImplementedError |
|
78
|
|
|
|
|
79
|
|
|
def get_dataset(self) -> tf.data.Dataset: |
|
80
|
|
|
""" |
|
81
|
|
|
defined in GeneratorDataLoader. |
|
82
|
|
|
""" |
|
83
|
|
|
raise NotImplementedError |
|
84
|
|
|
|
|
85
|
|
|
def get_dataset_and_preprocess( |
|
|
|
|
|
|
86
|
|
|
self, |
|
87
|
|
|
training: bool, |
|
88
|
|
|
batch_size: int, |
|
89
|
|
|
repeat: bool, |
|
90
|
|
|
shuffle_buffer_num_batch: int, |
|
91
|
|
|
data_augmentation: Optional[Union[List, Dict]] = None, |
|
92
|
|
|
) -> tf.data.Dataset: |
|
93
|
|
|
""" |
|
94
|
|
|
:param training: bool, indicating if it's training or not |
|
95
|
|
|
:param batch_size: int, size of mini batch |
|
96
|
|
|
:param repeat: bool, indicating if we need to repeat the dataset |
|
97
|
|
|
:param shuffle_buffer_num_batch: int, when shuffling, |
|
98
|
|
|
the shuffle_buffer_size = batch_size * shuffle_buffer_num_batch |
|
99
|
|
|
:param repeat: bool, indicating if we need to repeat the dataset |
|
100
|
|
|
:param data_augmentation: augmentation config, can be a list of dict or dict. |
|
101
|
|
|
:returns dataset: |
|
102
|
|
|
""" |
|
103
|
|
|
|
|
104
|
|
|
dataset = self.get_dataset() |
|
105
|
|
|
|
|
106
|
|
|
# resize |
|
107
|
|
|
dataset = dataset.map( |
|
108
|
|
|
lambda x: resize_inputs( |
|
109
|
|
|
inputs=x, |
|
110
|
|
|
moving_image_size=self.moving_image_shape, |
|
111
|
|
|
fixed_image_size=self.fixed_image_shape, |
|
112
|
|
|
), |
|
113
|
|
|
num_parallel_calls=tf.data.experimental.AUTOTUNE, |
|
114
|
|
|
) |
|
115
|
|
|
|
|
116
|
|
|
# shuffle / repeat / batch / preprocess |
|
117
|
|
|
if training and shuffle_buffer_num_batch > 0: |
|
118
|
|
|
dataset = dataset.shuffle( |
|
119
|
|
|
buffer_size=batch_size * shuffle_buffer_num_batch, |
|
120
|
|
|
reshuffle_each_iteration=True, |
|
121
|
|
|
) |
|
122
|
|
|
if repeat: |
|
123
|
|
|
dataset = dataset.repeat() |
|
124
|
|
|
|
|
125
|
|
|
dataset = dataset.batch(batch_size=batch_size, drop_remainder=training) |
|
126
|
|
|
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) |
|
127
|
|
|
|
|
128
|
|
|
if training and data_augmentation is not None: |
|
129
|
|
|
if isinstance(data_augmentation, dict): |
|
130
|
|
|
data_augmentation = [data_augmentation] |
|
131
|
|
|
for config in data_augmentation: |
|
132
|
|
|
da_fn = REGISTRY.build_data_augmentation( |
|
133
|
|
|
config=config, |
|
134
|
|
|
default_args={ |
|
135
|
|
|
"moving_image_size": self.moving_image_shape, |
|
136
|
|
|
"fixed_image_size": self.fixed_image_shape, |
|
137
|
|
|
"batch_size": batch_size, |
|
138
|
|
|
}, |
|
139
|
|
|
) |
|
140
|
|
|
dataset = dataset.map( |
|
141
|
|
|
da_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE |
|
142
|
|
|
) |
|
143
|
|
|
|
|
144
|
|
|
return dataset |
|
145
|
|
|
|
|
146
|
|
|
def close(self): |
|
|
|
|
|
|
147
|
|
|
pass |
|
148
|
|
|
|
|
149
|
|
|
|
|
150
|
|
|
class AbstractPairedDataLoader(DataLoader, ABC): |
|
151
|
|
|
""" |
|
152
|
|
|
Abstract loader for paired data independent of file format. |
|
153
|
|
|
""" |
|
154
|
|
|
|
|
155
|
|
|
def __init__( |
|
|
|
|
|
|
156
|
|
|
self, |
|
157
|
|
|
moving_image_shape: Union[Tuple[int, ...], List[int]], |
|
158
|
|
|
fixed_image_shape: Union[Tuple[int, ...], List[int]], |
|
159
|
|
|
**kwargs, |
|
160
|
|
|
): |
|
161
|
|
|
""" |
|
162
|
|
|
num_indices = 2 corresponding to (image_index, label_index) |
|
163
|
|
|
:param moving_image_shape: (width, height, depth) |
|
164
|
|
|
:param fixed_image_shape: (width, height, depth) |
|
165
|
|
|
:param kwargs: additional arguments. |
|
166
|
|
|
""" |
|
167
|
|
|
super().__init__(num_indices=2, **kwargs) |
|
168
|
|
|
if len(moving_image_shape) != 3 or len(fixed_image_shape) != 3: |
|
169
|
|
|
raise ValueError( |
|
170
|
|
|
f"moving_image_shape and fixed_image_shape have length of three, " |
|
171
|
|
|
f"corresponding to (width, height, depth), " |
|
172
|
|
|
f"got moving_image_shape = {moving_image_shape} " |
|
173
|
|
|
f"and fixed_image_shape = {fixed_image_shape}" |
|
174
|
|
|
) |
|
175
|
|
|
self._moving_image_shape = tuple(moving_image_shape) |
|
176
|
|
|
self._fixed_image_shape = tuple(fixed_image_shape) |
|
177
|
|
|
self.num_images = None |
|
178
|
|
|
|
|
179
|
|
|
@property |
|
180
|
|
|
def moving_image_shape(self) -> tuple: |
|
181
|
|
|
""" |
|
182
|
|
|
Return the moving image shape. |
|
183
|
|
|
:return: shape of moving image |
|
184
|
|
|
""" |
|
185
|
|
|
return self._moving_image_shape |
|
186
|
|
|
|
|
187
|
|
|
@property |
|
188
|
|
|
def fixed_image_shape(self) -> tuple: |
|
189
|
|
|
""" |
|
190
|
|
|
Return the fixed image shape. |
|
191
|
|
|
:return: shape of fixed image |
|
192
|
|
|
""" |
|
193
|
|
|
return self._fixed_image_shape |
|
194
|
|
|
|
|
195
|
|
|
@property |
|
196
|
|
|
def num_samples(self) -> int: |
|
197
|
|
|
""" |
|
198
|
|
|
Return the number of samples in the dataset for one epoch. |
|
199
|
|
|
:return: number of images |
|
200
|
|
|
""" |
|
201
|
|
|
return self.num_images # type:ignore |
|
202
|
|
|
|
|
203
|
|
|
|
|
204
|
|
|
class AbstractUnpairedDataLoader(DataLoader, ABC): |
|
205
|
|
|
""" |
|
206
|
|
|
Abstract loader for unparied data independent of file format. |
|
207
|
|
|
""" |
|
208
|
|
|
|
|
209
|
|
|
def __init__(self, image_shape: Union[Tuple[int, ...], List[int]], **kwargs): |
|
|
|
|
|
|
210
|
|
|
""" |
|
211
|
|
|
Init. |
|
212
|
|
|
|
|
213
|
|
|
:param image_shape: (dim1, dim2, dim3), for unpaired data, |
|
214
|
|
|
moving_image_shape = fixed_image_shape = image_shape |
|
215
|
|
|
:param kwargs: additional arguments. |
|
216
|
|
|
""" |
|
217
|
|
|
super().__init__(num_indices=3, **kwargs) |
|
218
|
|
|
if len(image_shape) != 3: |
|
219
|
|
|
raise ValueError( |
|
220
|
|
|
f"image_shape has to be length of three, " |
|
221
|
|
|
f"corresponding to (width, height, depth), " |
|
222
|
|
|
f"got {image_shape}" |
|
223
|
|
|
) |
|
224
|
|
|
self.image_shape = tuple(image_shape) |
|
225
|
|
|
self._num_samples = None |
|
226
|
|
|
|
|
227
|
|
|
@property |
|
228
|
|
|
def moving_image_shape(self) -> tuple: |
|
229
|
|
|
return self.image_shape |
|
230
|
|
|
|
|
231
|
|
|
@property |
|
232
|
|
|
def fixed_image_shape(self) -> tuple: |
|
233
|
|
|
return self.image_shape |
|
234
|
|
|
|
|
235
|
|
|
@property |
|
236
|
|
|
def num_samples(self) -> int: |
|
237
|
|
|
return self._num_samples # type:ignore |
|
238
|
|
|
|
|
239
|
|
|
|
|
240
|
|
|
class GeneratorDataLoader(DataLoader, ABC): |
|
241
|
|
|
""" |
|
242
|
|
|
Load samples by implementing get_dataset from DataLoader. |
|
243
|
|
|
""" |
|
244
|
|
|
|
|
245
|
|
|
def __init__(self, **kwargs): |
|
246
|
|
|
""" |
|
247
|
|
|
Init. |
|
248
|
|
|
|
|
249
|
|
|
:param kwargs: additional arguments. |
|
250
|
|
|
""" |
|
251
|
|
|
super().__init__(**kwargs) |
|
252
|
|
|
self.loader_moving_image = None |
|
253
|
|
|
self.loader_fixed_image = None |
|
254
|
|
|
self.loader_moving_label = None |
|
255
|
|
|
self.loader_fixed_label = None |
|
256
|
|
|
|
|
257
|
|
|
def get_dataset(self): |
|
258
|
|
|
""" |
|
259
|
|
|
Return a dataset from the generator. |
|
260
|
|
|
""" |
|
261
|
|
|
if self.labeled: |
|
|
|
|
|
|
262
|
|
|
return tf.data.Dataset.from_generator( |
|
263
|
|
|
generator=self.data_generator, |
|
264
|
|
|
output_types=dict( |
|
265
|
|
|
moving_image=tf.float32, |
|
266
|
|
|
fixed_image=tf.float32, |
|
267
|
|
|
moving_label=tf.float32, |
|
268
|
|
|
fixed_label=tf.float32, |
|
269
|
|
|
indices=tf.float32, |
|
270
|
|
|
), |
|
271
|
|
|
output_shapes=dict( |
|
272
|
|
|
moving_image=tf.TensorShape([None, None, None]), |
|
273
|
|
|
fixed_image=tf.TensorShape([None, None, None]), |
|
274
|
|
|
moving_label=tf.TensorShape([None, None, None]), |
|
275
|
|
|
fixed_label=tf.TensorShape([None, None, None]), |
|
276
|
|
|
indices=self.num_indices, |
|
277
|
|
|
), |
|
278
|
|
|
) |
|
279
|
|
|
else: |
|
280
|
|
|
return tf.data.Dataset.from_generator( |
|
281
|
|
|
generator=self.data_generator, |
|
282
|
|
|
output_types=dict( |
|
283
|
|
|
moving_image=tf.float32, fixed_image=tf.float32, indices=tf.float32 |
|
284
|
|
|
), |
|
285
|
|
|
output_shapes=dict( |
|
286
|
|
|
moving_image=tf.TensorShape([None, None, None]), |
|
287
|
|
|
fixed_image=tf.TensorShape([None, None, None]), |
|
288
|
|
|
indices=self.num_indices, |
|
289
|
|
|
), |
|
290
|
|
|
) |
|
291
|
|
|
|
|
292
|
|
|
def data_generator(self): |
|
293
|
|
|
""" |
|
294
|
|
|
Yield samples of data to feed model. |
|
295
|
|
|
""" |
|
296
|
|
|
for (moving_index, fixed_index, image_indices) in self.sample_index_generator(): |
|
297
|
|
|
moving_image = self.loader_moving_image.get_data(index=moving_index) |
|
298
|
|
|
moving_image = normalize_array(moving_image) |
|
299
|
|
|
fixed_image = self.loader_fixed_image.get_data(index=fixed_index) |
|
300
|
|
|
fixed_image = normalize_array(fixed_image) |
|
301
|
|
|
moving_label = ( |
|
302
|
|
|
self.loader_moving_label.get_data(index=moving_index) |
|
303
|
|
|
if self.labeled |
|
304
|
|
|
else None |
|
305
|
|
|
) |
|
306
|
|
|
fixed_label = ( |
|
307
|
|
|
self.loader_fixed_label.get_data(index=fixed_index) |
|
308
|
|
|
if self.labeled |
|
309
|
|
|
else None |
|
310
|
|
|
) |
|
311
|
|
|
|
|
312
|
|
|
for sample in self.sample_image_label( |
|
313
|
|
|
moving_image=moving_image, |
|
314
|
|
|
fixed_image=fixed_image, |
|
315
|
|
|
moving_label=moving_label, |
|
316
|
|
|
fixed_label=fixed_label, |
|
317
|
|
|
image_indices=image_indices, |
|
318
|
|
|
): |
|
319
|
|
|
yield sample |
|
320
|
|
|
|
|
321
|
|
|
def sample_index_generator(self): |
|
322
|
|
|
""" |
|
323
|
|
|
Method is defined by the implemented data loaders to yield the sample indexes. |
|
324
|
|
|
Only used in data_generator. |
|
325
|
|
|
""" |
|
326
|
|
|
raise NotImplementedError |
|
327
|
|
|
|
|
328
|
|
|
@staticmethod |
|
329
|
|
|
def validate_images_and_labels( |
|
|
|
|
|
|
330
|
|
|
moving_image: np.ndarray, |
|
331
|
|
|
fixed_image: np.ndarray, |
|
332
|
|
|
moving_label: Optional[np.ndarray], |
|
333
|
|
|
fixed_label: Optional[np.ndarray], |
|
334
|
|
|
image_indices: list, |
|
335
|
|
|
): |
|
336
|
|
|
""" |
|
337
|
|
|
Check file names match according to naming convention. |
|
338
|
|
|
Only used in sample_image_label. |
|
339
|
|
|
:param moving_image: np.ndarray of shape (m_dim1, m_dim2, m_dim3) |
|
340
|
|
|
:param fixed_image: np.ndarray of shape (f_dim1, f_dim2, f_dim3) |
|
341
|
|
|
:param moving_label: np.ndarray of shape (m_dim1, m_dim2, m_dim3) |
|
342
|
|
|
or (m_dim1, m_dim2, m_dim3, num_labels) |
|
343
|
|
|
:param fixed_label: np.ndarray of shape (f_dim1, f_dim2, f_dim3) |
|
344
|
|
|
or (f_dim1, f_dim2, f_dim3, num_labels) |
|
345
|
|
|
:param image_indices: list |
|
346
|
|
|
""" |
|
347
|
|
|
# images should never be None, and labels should all be non-None or None |
|
348
|
|
|
if moving_image is None or fixed_image is None: |
|
349
|
|
|
raise ValueError("moving image and fixed image must not be None") |
|
350
|
|
|
if (moving_label is None) != (fixed_label is None): |
|
351
|
|
|
raise ValueError( |
|
352
|
|
|
"moving label and fixed label must be both None or non-None" |
|
353
|
|
|
) |
|
354
|
|
|
# image and label's values should be between [0, 1] |
|
355
|
|
|
for arr, name in zip( |
|
356
|
|
|
[moving_image, fixed_image, moving_label, fixed_label], |
|
357
|
|
|
["moving_image", "fixed_image", "moving_label", "fixed_label"], |
|
358
|
|
|
): |
|
359
|
|
|
if arr is None: |
|
360
|
|
|
continue |
|
361
|
|
|
if np.min(arr) < 0 or np.max(arr) > 1: |
|
362
|
|
|
raise ValueError( |
|
363
|
|
|
f"Sample {image_indices}'s {name}'s values are not between [0, 1]. " |
|
364
|
|
|
f"Its minimum value is {np.min(arr)} " |
|
365
|
|
|
f"and its maximum value is {np.max(arr)}.\n" |
|
366
|
|
|
f"The images are automatically normalized on image level: " |
|
367
|
|
|
f"x = (x - min(x) + EPS) / (max(x) - min(x) + EPS). \n" |
|
368
|
|
|
f"Labels are assumed to have values between [0,1] " |
|
369
|
|
|
f"and they are not normalised. " |
|
370
|
|
|
f"This is to prevent accidental use of other encoding methods " |
|
371
|
|
|
f"other than one-hot to represent multiple class labels.\n" |
|
372
|
|
|
f"If the label values are intended to represent multiple labels, " |
|
373
|
|
|
f"convert them to one hot / binary masks in multiple channels, " |
|
374
|
|
|
f"with each channel representing one label only.\n" |
|
375
|
|
|
f"Please read the dataset requirements section " |
|
376
|
|
|
f"in docs/doc_data_loader.md for more detailed information." |
|
377
|
|
|
) |
|
378
|
|
|
# images should be 3D arrays |
|
379
|
|
|
for arr, name in zip( |
|
380
|
|
|
[moving_image, fixed_image], ["moving_image", "fixed_image"] |
|
381
|
|
|
): |
|
382
|
|
|
if len(arr.shape) != 3: |
|
383
|
|
|
raise ValueError( |
|
384
|
|
|
f"Sample {image_indices}'s {name}' shape should be 3D. " |
|
385
|
|
|
f"Got {arr.shape}." |
|
386
|
|
|
) |
|
387
|
|
|
# when data are labeled |
|
388
|
|
|
if moving_label is not None and fixed_label is not None: |
|
389
|
|
|
# labels should be 3D or 4D arrays |
|
390
|
|
|
for arr, name in zip( |
|
391
|
|
|
[moving_label, fixed_label], ["moving_label", "fixed_label"] |
|
392
|
|
|
): |
|
393
|
|
|
if len(arr.shape) not in [3, 4]: |
|
394
|
|
|
raise ValueError( |
|
395
|
|
|
f"Sample {image_indices}'s {name}' shape should be 3D or 4D. " |
|
396
|
|
|
f"Got {arr.shape}." |
|
397
|
|
|
) |
|
398
|
|
|
# image and label is better to have the same shape |
|
399
|
|
|
if moving_image.shape[:3] != moving_label.shape[:3]: |
|
400
|
|
|
logging.warning( |
|
|
|
|
|
|
401
|
|
|
f"Sample {image_indices}'s moving image and label " |
|
402
|
|
|
f"have different shapes. " |
|
403
|
|
|
f"moving_image.shape = {moving_image.shape}, " |
|
404
|
|
|
f"moving_label.shape = {moving_label.shape}" |
|
405
|
|
|
) |
|
406
|
|
|
if fixed_image.shape[:3] != fixed_label.shape[:3]: |
|
407
|
|
|
logging.warning( |
|
|
|
|
|
|
408
|
|
|
f"Sample {image_indices}'s fixed image and label " |
|
409
|
|
|
f"have different shapes. " |
|
410
|
|
|
f"fixed_image.shape = {fixed_image.shape}, " |
|
411
|
|
|
f"fixed_label.shape = {fixed_label.shape}" |
|
412
|
|
|
) |
|
413
|
|
|
# number of labels for fixed and fixed images should be the same |
|
414
|
|
|
num_labels_moving = ( |
|
415
|
|
|
1 if len(moving_label.shape) == 3 else moving_label.shape[-1] |
|
416
|
|
|
) |
|
417
|
|
|
num_labels_fixed = ( |
|
418
|
|
|
1 if len(fixed_label.shape) == 3 else fixed_label.shape[-1] |
|
419
|
|
|
) |
|
420
|
|
|
if num_labels_moving != num_labels_fixed: |
|
421
|
|
|
raise ValueError( |
|
422
|
|
|
f"Sample {image_indices}'s moving image and fixed image " |
|
423
|
|
|
f"have different numbers of labels. " |
|
424
|
|
|
f"moving: {num_labels_moving}, fixed: {num_labels_fixed}" |
|
425
|
|
|
) |
|
426
|
|
|
|
|
427
|
|
|
def sample_image_label( |
|
|
|
|
|
|
428
|
|
|
self, |
|
429
|
|
|
moving_image: np.ndarray, |
|
430
|
|
|
fixed_image: np.ndarray, |
|
431
|
|
|
moving_label: Optional[np.ndarray], |
|
432
|
|
|
fixed_label: Optional[np.ndarray], |
|
433
|
|
|
image_indices: list, |
|
434
|
|
|
): |
|
435
|
|
|
""" |
|
436
|
|
|
Sample the image labels, only used in data_generator. |
|
437
|
|
|
|
|
438
|
|
|
:param moving_image: |
|
439
|
|
|
:param fixed_image: |
|
440
|
|
|
:param moving_label: |
|
441
|
|
|
:param fixed_label: |
|
442
|
|
|
:param image_indices: |
|
443
|
|
|
""" |
|
444
|
|
|
self.validate_images_and_labels( |
|
445
|
|
|
moving_image, fixed_image, moving_label, fixed_label, image_indices |
|
446
|
|
|
) |
|
447
|
|
|
# unlabeled |
|
448
|
|
|
if moving_label is None or fixed_label is None: |
|
449
|
|
|
label_index = -1 # means no label |
|
450
|
|
|
indices = np.asarray(image_indices + [label_index], dtype=np.float32) |
|
451
|
|
|
yield dict( |
|
452
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
|
453
|
|
|
) |
|
454
|
|
|
else: |
|
455
|
|
|
# labeled |
|
456
|
|
|
if len(moving_label.shape) == 4: # multiple labels |
|
457
|
|
|
label_indices = get_label_indices( |
|
458
|
|
|
moving_label.shape[3], self.sample_label # type:ignore |
|
459
|
|
|
) |
|
460
|
|
|
for label_index in label_indices: |
|
461
|
|
|
indices = np.asarray( |
|
462
|
|
|
image_indices + [label_index], dtype=np.float32 |
|
463
|
|
|
) |
|
464
|
|
|
yield dict( |
|
465
|
|
|
moving_image=moving_image, |
|
466
|
|
|
fixed_image=fixed_image, |
|
467
|
|
|
indices=indices, |
|
468
|
|
|
moving_label=moving_label[..., label_index], |
|
469
|
|
|
fixed_label=fixed_label[..., label_index], |
|
470
|
|
|
) |
|
471
|
|
|
else: # only one label |
|
472
|
|
|
label_index = 0 |
|
473
|
|
|
indices = np.asarray(image_indices + [label_index], dtype=np.float32) |
|
474
|
|
|
yield dict( |
|
475
|
|
|
moving_image=moving_image, |
|
476
|
|
|
fixed_image=fixed_image, |
|
477
|
|
|
moving_label=moving_label, |
|
478
|
|
|
fixed_label=fixed_label, |
|
479
|
|
|
indices=indices, |
|
480
|
|
|
) |
|
481
|
|
|
|
|
482
|
|
|
|
|
483
|
|
|
class FileLoader: |
|
484
|
|
|
""" |
|
485
|
|
|
Interface / abstract class to load data from multiple directories. |
|
486
|
|
|
""" |
|
487
|
|
|
|
|
488
|
|
|
def __init__(self, dir_paths: list, name: str, grouped: bool): |
|
|
|
|
|
|
489
|
|
|
""" |
|
490
|
|
|
:param dir_paths: path to the directory of the data set |
|
491
|
|
|
:param name: name is used to identify the subdirectories or file names |
|
492
|
|
|
:param grouped: true if the data is grouped |
|
493
|
|
|
""" |
|
494
|
|
|
assert isinstance( |
|
495
|
|
|
dir_paths, list |
|
496
|
|
|
), f"dir_paths must be list of strings, got {dir_paths}" |
|
497
|
|
|
if len(set(dir_paths)) != len(dir_paths): |
|
498
|
|
|
raise ValueError(f"dir_paths have repeated elements: {dir_paths}") |
|
499
|
|
|
self.dir_paths = dir_paths |
|
500
|
|
|
self.name = name |
|
501
|
|
|
self.grouped = grouped |
|
502
|
|
|
# if grouped, group_struct[group_index] = list of data_index |
|
503
|
|
|
self.group_struct = None |
|
504
|
|
|
|
|
505
|
|
|
def set_data_structure(self): |
|
506
|
|
|
""" |
|
507
|
|
|
Store the data structure in memory to retrieve data using data_index. |
|
508
|
|
|
""" |
|
509
|
|
|
raise NotImplementedError |
|
510
|
|
|
|
|
511
|
|
|
def set_group_structure(self): |
|
512
|
|
|
""" |
|
513
|
|
|
In addition to set_data_structure, |
|
514
|
|
|
store the group structure in the group_struct so that |
|
515
|
|
|
group_struct[group_index] = list of data_index |
|
516
|
|
|
and data can be retrieved data by |
|
517
|
|
|
data_index = group_struct[group_index][in_group_data_index] |
|
518
|
|
|
""" |
|
519
|
|
|
raise NotImplementedError |
|
520
|
|
|
|
|
521
|
|
|
def get_data(self, index: Union[int, Tuple[int, ...]]) -> np.ndarray: |
|
522
|
|
|
""" |
|
523
|
|
|
Get one data array by specifying an index. |
|
524
|
|
|
|
|
525
|
|
|
:param index: the data index which is required |
|
526
|
|
|
|
|
527
|
|
|
- for paired or unpaired, the index is one single int, data_index |
|
528
|
|
|
- for grouped, the index is a tuple of two ints, |
|
529
|
|
|
(group_index, in_group_data_index) |
|
530
|
|
|
|
|
531
|
|
|
:return: the data array at the specified index |
|
532
|
|
|
""" |
|
533
|
|
|
raise NotImplementedError |
|
534
|
|
|
|
|
535
|
|
|
def get_data_ids(self) -> List: |
|
536
|
|
|
""" |
|
537
|
|
|
Return the unique IDs of the data in this data set. |
|
538
|
|
|
This function is used to verify the consistency between |
|
539
|
|
|
moving and fixed images and label. |
|
540
|
|
|
""" |
|
541
|
|
|
raise NotImplementedError |
|
542
|
|
|
|
|
543
|
|
|
def get_num_images(self) -> int: |
|
544
|
|
|
""" |
|
545
|
|
|
Return the number of image in this data set. |
|
546
|
|
|
|
|
547
|
|
|
:return: int, number of images in this data set |
|
548
|
|
|
""" |
|
549
|
|
|
raise NotImplementedError |
|
550
|
|
|
|
|
551
|
|
|
def get_num_groups(self) -> int: |
|
552
|
|
|
""" |
|
553
|
|
|
Return the number of groups in grouped data set. |
|
554
|
|
|
|
|
555
|
|
|
:return: int, number of groups in this data set, if grouped |
|
556
|
|
|
""" |
|
557
|
|
|
assert self.group_struct is not None |
|
558
|
|
|
return len(self.group_struct) |
|
559
|
|
|
|
|
560
|
|
|
def get_num_images_per_group(self) -> List[int]: |
|
|
|
|
|
|
561
|
|
|
""" |
|
562
|
|
|
Return the number of images in each group. |
|
563
|
|
|
Each group must have at least one image. |
|
564
|
|
|
|
|
565
|
|
|
:return: a list of integers, representing the number of images in each group. |
|
566
|
|
|
""" |
|
567
|
|
|
assert self.group_struct is not None |
|
568
|
|
|
num_images_per_group = [len(group) for group in self.group_struct] |
|
569
|
|
|
if min(num_images_per_group) == 0: |
|
570
|
|
|
group_ids = [ |
|
571
|
|
|
len(group) for group_index, group in enumerate(self.group_struct) |
|
572
|
|
|
] |
|
573
|
|
|
raise ValueError(f"Groups of ID {group_ids} are empty.") |
|
574
|
|
|
return num_images_per_group |
|
575
|
|
|
|
|
576
|
|
|
def close(self): |
|
577
|
|
|
"""Close opened file handles if exist.""" |
|
578
|
|
|
raise NotImplementedError |
|
579
|
|
|
|