1
|
|
|
""" |
2
|
|
|
Interface between the data loaders and file loaders. |
3
|
|
|
""" |
4
|
|
|
import logging |
5
|
|
|
from abc import ABC |
6
|
|
|
from typing import Dict, List, Optional, Tuple, Union |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import tensorflow as tf |
10
|
|
|
|
11
|
|
|
from deepreg.dataset.loader.util import normalize_array |
12
|
|
|
from deepreg.dataset.preprocess import resize_inputs |
13
|
|
|
from deepreg.dataset.util import get_label_indices |
14
|
|
|
from deepreg.registry import REGISTRY |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
class DataLoader: |
18
|
|
|
""" |
19
|
|
|
loads data to feed to model. |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
def __init__( |
23
|
|
|
self, |
24
|
|
|
labeled: Optional[bool], |
25
|
|
|
num_indices: Optional[int], |
26
|
|
|
sample_label: Optional[str], |
27
|
|
|
seed: Optional[int] = None, |
28
|
|
|
): |
29
|
|
|
""" |
30
|
|
|
:param labeled: bool corresponding to labels provided or omitted |
31
|
|
|
:param num_indices: |
32
|
|
|
:param sample_label: |
33
|
|
|
:param seed: |
34
|
|
|
""" |
35
|
|
|
assert labeled in [ |
36
|
|
|
True, |
37
|
|
|
False, |
38
|
|
|
None, |
39
|
|
|
], f"labeled must be boolean, True or False or None, got {labeled}" |
40
|
|
|
assert sample_label in [ |
41
|
|
|
"sample", |
42
|
|
|
"all", |
43
|
|
|
None, |
44
|
|
|
], f"sample_label must be sample, all or None, got {sample_label}" |
45
|
|
|
assert ( |
46
|
|
|
num_indices is None or num_indices >= 1 |
47
|
|
|
), f"num_indices must be int >=1 or None, got {num_indices}" |
48
|
|
|
assert seed is None or isinstance( |
49
|
|
|
seed, int |
50
|
|
|
), f"seed must be None or int, got {seed}" |
51
|
|
|
|
52
|
|
|
self.labeled = labeled |
53
|
|
|
self.num_indices = num_indices # number of indices to identify a sample |
54
|
|
|
self.sample_label = sample_label |
55
|
|
|
self.seed = seed # used for sampling |
56
|
|
|
|
57
|
|
|
@property |
58
|
|
|
def moving_image_shape(self) -> tuple: |
59
|
|
|
""" |
60
|
|
|
needs to be defined by user. |
61
|
|
|
""" |
62
|
|
|
raise NotImplementedError |
63
|
|
|
|
64
|
|
|
@property |
65
|
|
|
def fixed_image_shape(self) -> tuple: |
66
|
|
|
""" |
67
|
|
|
needs to be defined by user. |
68
|
|
|
""" |
69
|
|
|
raise NotImplementedError |
70
|
|
|
|
71
|
|
|
@property |
72
|
|
|
def num_samples(self) -> int: |
73
|
|
|
""" |
74
|
|
|
Return the number of samples in the dataset for one epoch |
75
|
|
|
:return: |
76
|
|
|
""" |
77
|
|
|
raise NotImplementedError |
78
|
|
|
|
79
|
|
|
def get_dataset(self) -> tf.data.Dataset: |
80
|
|
|
""" |
81
|
|
|
defined in GeneratorDataLoader. |
82
|
|
|
""" |
83
|
|
|
raise NotImplementedError |
84
|
|
|
|
85
|
|
|
def get_dataset_and_preprocess( |
|
|
|
|
86
|
|
|
self, |
87
|
|
|
training: bool, |
88
|
|
|
batch_size: int, |
89
|
|
|
repeat: bool, |
90
|
|
|
shuffle_buffer_num_batch: int, |
91
|
|
|
data_augmentation: Optional[Union[List, Dict]] = None, |
92
|
|
|
) -> tf.data.Dataset: |
93
|
|
|
""" |
94
|
|
|
:param training: bool, indicating if it's training or not |
95
|
|
|
:param batch_size: int, size of mini batch |
96
|
|
|
:param repeat: bool, indicating if we need to repeat the dataset |
97
|
|
|
:param shuffle_buffer_num_batch: int, when shuffling, |
98
|
|
|
the shuffle_buffer_size = batch_size * shuffle_buffer_num_batch |
99
|
|
|
:param repeat: bool, indicating if we need to repeat the dataset |
100
|
|
|
:param data_augmentation: augmentation config, can be a list of dict or dict. |
101
|
|
|
:returns dataset: |
102
|
|
|
""" |
103
|
|
|
|
104
|
|
|
dataset = self.get_dataset() |
105
|
|
|
|
106
|
|
|
# resize |
107
|
|
|
dataset = dataset.map( |
108
|
|
|
lambda x: resize_inputs( |
109
|
|
|
inputs=x, |
110
|
|
|
moving_image_size=self.moving_image_shape, |
111
|
|
|
fixed_image_size=self.fixed_image_shape, |
112
|
|
|
), |
113
|
|
|
num_parallel_calls=tf.data.experimental.AUTOTUNE, |
114
|
|
|
) |
115
|
|
|
|
116
|
|
|
# shuffle / repeat / batch / preprocess |
117
|
|
|
if training and shuffle_buffer_num_batch > 0: |
118
|
|
|
dataset = dataset.shuffle( |
119
|
|
|
buffer_size=batch_size * shuffle_buffer_num_batch, |
120
|
|
|
reshuffle_each_iteration=True, |
121
|
|
|
) |
122
|
|
|
if repeat: |
123
|
|
|
dataset = dataset.repeat() |
124
|
|
|
|
125
|
|
|
dataset = dataset.batch(batch_size=batch_size, drop_remainder=training) |
126
|
|
|
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) |
127
|
|
|
|
128
|
|
|
if training and data_augmentation is not None: |
129
|
|
|
if isinstance(data_augmentation, dict): |
130
|
|
|
data_augmentation = [data_augmentation] |
131
|
|
|
for config in data_augmentation: |
132
|
|
|
da_fn = REGISTRY.build_data_augmentation( |
133
|
|
|
config=config, |
134
|
|
|
default_args={ |
135
|
|
|
"moving_image_size": self.moving_image_shape, |
136
|
|
|
"fixed_image_size": self.fixed_image_shape, |
137
|
|
|
"batch_size": batch_size, |
138
|
|
|
}, |
139
|
|
|
) |
140
|
|
|
dataset = dataset.map( |
141
|
|
|
da_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE |
142
|
|
|
) |
143
|
|
|
|
144
|
|
|
return dataset |
145
|
|
|
|
146
|
|
|
def close(self): |
|
|
|
|
147
|
|
|
pass |
148
|
|
|
|
149
|
|
|
|
150
|
|
|
class AbstractPairedDataLoader(DataLoader, ABC): |
151
|
|
|
""" |
152
|
|
|
Abstract loader for paired data independent of file format. |
153
|
|
|
""" |
154
|
|
|
|
155
|
|
|
def __init__( |
|
|
|
|
156
|
|
|
self, |
157
|
|
|
moving_image_shape: Union[Tuple[int, ...], List[int]], |
158
|
|
|
fixed_image_shape: Union[Tuple[int, ...], List[int]], |
159
|
|
|
**kwargs, |
160
|
|
|
): |
161
|
|
|
""" |
162
|
|
|
num_indices = 2 corresponding to (image_index, label_index) |
163
|
|
|
:param moving_image_shape: (width, height, depth) |
164
|
|
|
:param fixed_image_shape: (width, height, depth) |
165
|
|
|
:param kwargs: additional arguments. |
166
|
|
|
""" |
167
|
|
|
super().__init__(num_indices=2, **kwargs) |
168
|
|
|
if len(moving_image_shape) != 3 or len(fixed_image_shape) != 3: |
169
|
|
|
raise ValueError( |
170
|
|
|
f"moving_image_shape and fixed_image_shape have length of three, " |
171
|
|
|
f"corresponding to (width, height, depth), " |
172
|
|
|
f"got moving_image_shape = {moving_image_shape} " |
173
|
|
|
f"and fixed_image_shape = {fixed_image_shape}" |
174
|
|
|
) |
175
|
|
|
self._moving_image_shape = tuple(moving_image_shape) |
176
|
|
|
self._fixed_image_shape = tuple(fixed_image_shape) |
177
|
|
|
self.num_images = None |
178
|
|
|
|
179
|
|
|
@property |
180
|
|
|
def moving_image_shape(self) -> tuple: |
181
|
|
|
""" |
182
|
|
|
Return the moving image shape. |
183
|
|
|
:return: shape of moving image |
184
|
|
|
""" |
185
|
|
|
return self._moving_image_shape |
186
|
|
|
|
187
|
|
|
@property |
188
|
|
|
def fixed_image_shape(self) -> tuple: |
189
|
|
|
""" |
190
|
|
|
Return the fixed image shape. |
191
|
|
|
:return: shape of fixed image |
192
|
|
|
""" |
193
|
|
|
return self._fixed_image_shape |
194
|
|
|
|
195
|
|
|
@property |
196
|
|
|
def num_samples(self) -> int: |
197
|
|
|
""" |
198
|
|
|
Return the number of samples in the dataset for one epoch. |
199
|
|
|
:return: number of images |
200
|
|
|
""" |
201
|
|
|
return self.num_images # type:ignore |
202
|
|
|
|
203
|
|
|
|
204
|
|
|
class AbstractUnpairedDataLoader(DataLoader, ABC): |
205
|
|
|
""" |
206
|
|
|
Abstract loader for unparied data independent of file format. |
207
|
|
|
""" |
208
|
|
|
|
209
|
|
|
def __init__(self, image_shape: Union[Tuple[int, ...], List[int]], **kwargs): |
|
|
|
|
210
|
|
|
""" |
211
|
|
|
Init. |
212
|
|
|
|
213
|
|
|
:param image_shape: (dim1, dim2, dim3), for unpaired data, |
214
|
|
|
moving_image_shape = fixed_image_shape = image_shape |
215
|
|
|
:param kwargs: additional arguments. |
216
|
|
|
""" |
217
|
|
|
super().__init__(num_indices=3, **kwargs) |
218
|
|
|
if len(image_shape) != 3: |
219
|
|
|
raise ValueError( |
220
|
|
|
f"image_shape has to be length of three, " |
221
|
|
|
f"corresponding to (width, height, depth), " |
222
|
|
|
f"got {image_shape}" |
223
|
|
|
) |
224
|
|
|
self.image_shape = tuple(image_shape) |
225
|
|
|
self._num_samples = None |
226
|
|
|
|
227
|
|
|
@property |
228
|
|
|
def moving_image_shape(self) -> tuple: |
229
|
|
|
return self.image_shape |
230
|
|
|
|
231
|
|
|
@property |
232
|
|
|
def fixed_image_shape(self) -> tuple: |
233
|
|
|
return self.image_shape |
234
|
|
|
|
235
|
|
|
@property |
236
|
|
|
def num_samples(self) -> int: |
237
|
|
|
return self._num_samples # type:ignore |
238
|
|
|
|
239
|
|
|
|
240
|
|
|
class GeneratorDataLoader(DataLoader, ABC): |
241
|
|
|
""" |
242
|
|
|
Load samples by implementing get_dataset from DataLoader. |
243
|
|
|
""" |
244
|
|
|
|
245
|
|
|
def __init__(self, **kwargs): |
246
|
|
|
""" |
247
|
|
|
Init. |
248
|
|
|
|
249
|
|
|
:param kwargs: additional arguments. |
250
|
|
|
""" |
251
|
|
|
super().__init__(**kwargs) |
252
|
|
|
self.loader_moving_image = None |
253
|
|
|
self.loader_fixed_image = None |
254
|
|
|
self.loader_moving_label = None |
255
|
|
|
self.loader_fixed_label = None |
256
|
|
|
|
257
|
|
|
def get_dataset(self): |
258
|
|
|
""" |
259
|
|
|
Return a dataset from the generator. |
260
|
|
|
""" |
261
|
|
|
if self.labeled: |
|
|
|
|
262
|
|
|
return tf.data.Dataset.from_generator( |
263
|
|
|
generator=self.data_generator, |
264
|
|
|
output_types=dict( |
265
|
|
|
moving_image=tf.float32, |
266
|
|
|
fixed_image=tf.float32, |
267
|
|
|
moving_label=tf.float32, |
268
|
|
|
fixed_label=tf.float32, |
269
|
|
|
indices=tf.float32, |
270
|
|
|
), |
271
|
|
|
output_shapes=dict( |
272
|
|
|
moving_image=tf.TensorShape([None, None, None]), |
273
|
|
|
fixed_image=tf.TensorShape([None, None, None]), |
274
|
|
|
moving_label=tf.TensorShape([None, None, None]), |
275
|
|
|
fixed_label=tf.TensorShape([None, None, None]), |
276
|
|
|
indices=self.num_indices, |
277
|
|
|
), |
278
|
|
|
) |
279
|
|
|
else: |
280
|
|
|
return tf.data.Dataset.from_generator( |
281
|
|
|
generator=self.data_generator, |
282
|
|
|
output_types=dict( |
283
|
|
|
moving_image=tf.float32, fixed_image=tf.float32, indices=tf.float32 |
284
|
|
|
), |
285
|
|
|
output_shapes=dict( |
286
|
|
|
moving_image=tf.TensorShape([None, None, None]), |
287
|
|
|
fixed_image=tf.TensorShape([None, None, None]), |
288
|
|
|
indices=self.num_indices, |
289
|
|
|
), |
290
|
|
|
) |
291
|
|
|
|
292
|
|
|
def data_generator(self): |
293
|
|
|
""" |
294
|
|
|
Yield samples of data to feed model. |
295
|
|
|
""" |
296
|
|
|
for (moving_index, fixed_index, image_indices) in self.sample_index_generator(): |
297
|
|
|
moving_image = self.loader_moving_image.get_data(index=moving_index) |
298
|
|
|
moving_image = normalize_array(moving_image) |
299
|
|
|
fixed_image = self.loader_fixed_image.get_data(index=fixed_index) |
300
|
|
|
fixed_image = normalize_array(fixed_image) |
301
|
|
|
moving_label = ( |
302
|
|
|
self.loader_moving_label.get_data(index=moving_index) |
303
|
|
|
if self.labeled |
304
|
|
|
else None |
305
|
|
|
) |
306
|
|
|
fixed_label = ( |
307
|
|
|
self.loader_fixed_label.get_data(index=fixed_index) |
308
|
|
|
if self.labeled |
309
|
|
|
else None |
310
|
|
|
) |
311
|
|
|
|
312
|
|
|
for sample in self.sample_image_label( |
313
|
|
|
moving_image=moving_image, |
314
|
|
|
fixed_image=fixed_image, |
315
|
|
|
moving_label=moving_label, |
316
|
|
|
fixed_label=fixed_label, |
317
|
|
|
image_indices=image_indices, |
318
|
|
|
): |
319
|
|
|
yield sample |
320
|
|
|
|
321
|
|
|
def sample_index_generator(self): |
322
|
|
|
""" |
323
|
|
|
Method is defined by the implemented data loaders to yield the sample indexes. |
324
|
|
|
Only used in data_generator. |
325
|
|
|
""" |
326
|
|
|
raise NotImplementedError |
327
|
|
|
|
328
|
|
|
@staticmethod |
329
|
|
|
def validate_images_and_labels( |
|
|
|
|
330
|
|
|
moving_image: np.ndarray, |
331
|
|
|
fixed_image: np.ndarray, |
332
|
|
|
moving_label: Optional[np.ndarray], |
333
|
|
|
fixed_label: Optional[np.ndarray], |
334
|
|
|
image_indices: list, |
335
|
|
|
): |
336
|
|
|
""" |
337
|
|
|
Check file names match according to naming convention. |
338
|
|
|
Only used in sample_image_label. |
339
|
|
|
:param moving_image: np.ndarray of shape (m_dim1, m_dim2, m_dim3) |
340
|
|
|
:param fixed_image: np.ndarray of shape (f_dim1, f_dim2, f_dim3) |
341
|
|
|
:param moving_label: np.ndarray of shape (m_dim1, m_dim2, m_dim3) |
342
|
|
|
or (m_dim1, m_dim2, m_dim3, num_labels) |
343
|
|
|
:param fixed_label: np.ndarray of shape (f_dim1, f_dim2, f_dim3) |
344
|
|
|
or (f_dim1, f_dim2, f_dim3, num_labels) |
345
|
|
|
:param image_indices: list |
346
|
|
|
""" |
347
|
|
|
# images should never be None, and labels should all be non-None or None |
348
|
|
|
if moving_image is None or fixed_image is None: |
349
|
|
|
raise ValueError("moving image and fixed image must not be None") |
350
|
|
|
if (moving_label is None) != (fixed_label is None): |
351
|
|
|
raise ValueError( |
352
|
|
|
"moving label and fixed label must be both None or non-None" |
353
|
|
|
) |
354
|
|
|
# image and label's values should be between [0, 1] |
355
|
|
|
for arr, name in zip( |
356
|
|
|
[moving_image, fixed_image, moving_label, fixed_label], |
357
|
|
|
["moving_image", "fixed_image", "moving_label", "fixed_label"], |
358
|
|
|
): |
359
|
|
|
if arr is None: |
360
|
|
|
continue |
361
|
|
|
if np.min(arr) < 0 or np.max(arr) > 1: |
362
|
|
|
raise ValueError( |
363
|
|
|
f"Sample {image_indices}'s {name}'s values are not between [0, 1]. " |
364
|
|
|
f"Its minimum value is {np.min(arr)} " |
365
|
|
|
f"and its maximum value is {np.max(arr)}.\n" |
366
|
|
|
f"The images are automatically normalized on image level: " |
367
|
|
|
f"x = (x - min(x) + EPS) / (max(x) - min(x) + EPS). \n" |
368
|
|
|
f"Labels are assumed to have values between [0,1] " |
369
|
|
|
f"and they are not normalised. " |
370
|
|
|
f"This is to prevent accidental use of other encoding methods " |
371
|
|
|
f"other than one-hot to represent multiple class labels.\n" |
372
|
|
|
f"If the label values are intended to represent multiple labels, " |
373
|
|
|
f"convert them to one hot / binary masks in multiple channels, " |
374
|
|
|
f"with each channel representing one label only.\n" |
375
|
|
|
f"Please read the dataset requirements section " |
376
|
|
|
f"in docs/doc_data_loader.md for more detailed information." |
377
|
|
|
) |
378
|
|
|
# images should be 3D arrays |
379
|
|
|
for arr, name in zip( |
380
|
|
|
[moving_image, fixed_image], ["moving_image", "fixed_image"] |
381
|
|
|
): |
382
|
|
|
if len(arr.shape) != 3: |
383
|
|
|
raise ValueError( |
384
|
|
|
f"Sample {image_indices}'s {name}' shape should be 3D. " |
385
|
|
|
f"Got {arr.shape}." |
386
|
|
|
) |
387
|
|
|
# when data are labeled |
388
|
|
|
if moving_label is not None and fixed_label is not None: |
389
|
|
|
# labels should be 3D or 4D arrays |
390
|
|
|
for arr, name in zip( |
391
|
|
|
[moving_label, fixed_label], ["moving_label", "fixed_label"] |
392
|
|
|
): |
393
|
|
|
if len(arr.shape) not in [3, 4]: |
394
|
|
|
raise ValueError( |
395
|
|
|
f"Sample {image_indices}'s {name}' shape should be 3D or 4D. " |
396
|
|
|
f"Got {arr.shape}." |
397
|
|
|
) |
398
|
|
|
# image and label is better to have the same shape |
399
|
|
|
if moving_image.shape[:3] != moving_label.shape[:3]: |
400
|
|
|
logging.warning( |
|
|
|
|
401
|
|
|
f"Sample {image_indices}'s moving image and label " |
402
|
|
|
f"have different shapes. " |
403
|
|
|
f"moving_image.shape = {moving_image.shape}, " |
404
|
|
|
f"moving_label.shape = {moving_label.shape}" |
405
|
|
|
) |
406
|
|
|
if fixed_image.shape[:3] != fixed_label.shape[:3]: |
407
|
|
|
logging.warning( |
|
|
|
|
408
|
|
|
f"Sample {image_indices}'s fixed image and label " |
409
|
|
|
f"have different shapes. " |
410
|
|
|
f"fixed_image.shape = {fixed_image.shape}, " |
411
|
|
|
f"fixed_label.shape = {fixed_label.shape}" |
412
|
|
|
) |
413
|
|
|
# number of labels for fixed and fixed images should be the same |
414
|
|
|
num_labels_moving = ( |
415
|
|
|
1 if len(moving_label.shape) == 3 else moving_label.shape[-1] |
416
|
|
|
) |
417
|
|
|
num_labels_fixed = ( |
418
|
|
|
1 if len(fixed_label.shape) == 3 else fixed_label.shape[-1] |
419
|
|
|
) |
420
|
|
|
if num_labels_moving != num_labels_fixed: |
421
|
|
|
raise ValueError( |
422
|
|
|
f"Sample {image_indices}'s moving image and fixed image " |
423
|
|
|
f"have different numbers of labels. " |
424
|
|
|
f"moving: {num_labels_moving}, fixed: {num_labels_fixed}" |
425
|
|
|
) |
426
|
|
|
|
427
|
|
|
def sample_image_label( |
|
|
|
|
428
|
|
|
self, |
429
|
|
|
moving_image: np.ndarray, |
430
|
|
|
fixed_image: np.ndarray, |
431
|
|
|
moving_label: Optional[np.ndarray], |
432
|
|
|
fixed_label: Optional[np.ndarray], |
433
|
|
|
image_indices: list, |
434
|
|
|
): |
435
|
|
|
""" |
436
|
|
|
Sample the image labels, only used in data_generator. |
437
|
|
|
|
438
|
|
|
:param moving_image: |
439
|
|
|
:param fixed_image: |
440
|
|
|
:param moving_label: |
441
|
|
|
:param fixed_label: |
442
|
|
|
:param image_indices: |
443
|
|
|
""" |
444
|
|
|
self.validate_images_and_labels( |
445
|
|
|
moving_image, fixed_image, moving_label, fixed_label, image_indices |
446
|
|
|
) |
447
|
|
|
# unlabeled |
448
|
|
|
if moving_label is None or fixed_label is None: |
449
|
|
|
label_index = -1 # means no label |
450
|
|
|
indices = np.asarray(image_indices + [label_index], dtype=np.float32) |
451
|
|
|
yield dict( |
452
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
453
|
|
|
) |
454
|
|
|
else: |
455
|
|
|
# labeled |
456
|
|
|
if len(moving_label.shape) == 4: # multiple labels |
457
|
|
|
label_indices = get_label_indices( |
458
|
|
|
moving_label.shape[3], self.sample_label # type:ignore |
459
|
|
|
) |
460
|
|
|
for label_index in label_indices: |
461
|
|
|
indices = np.asarray( |
462
|
|
|
image_indices + [label_index], dtype=np.float32 |
463
|
|
|
) |
464
|
|
|
yield dict( |
465
|
|
|
moving_image=moving_image, |
466
|
|
|
fixed_image=fixed_image, |
467
|
|
|
indices=indices, |
468
|
|
|
moving_label=moving_label[..., label_index], |
469
|
|
|
fixed_label=fixed_label[..., label_index], |
470
|
|
|
) |
471
|
|
|
else: # only one label |
472
|
|
|
label_index = 0 |
473
|
|
|
indices = np.asarray(image_indices + [label_index], dtype=np.float32) |
474
|
|
|
yield dict( |
475
|
|
|
moving_image=moving_image, |
476
|
|
|
fixed_image=fixed_image, |
477
|
|
|
moving_label=moving_label, |
478
|
|
|
fixed_label=fixed_label, |
479
|
|
|
indices=indices, |
480
|
|
|
) |
481
|
|
|
|
482
|
|
|
|
483
|
|
|
class FileLoader: |
484
|
|
|
""" |
485
|
|
|
Interface / abstract class to load data from multiple directories. |
486
|
|
|
""" |
487
|
|
|
|
488
|
|
|
def __init__(self, dir_paths: list, name: str, grouped: bool): |
|
|
|
|
489
|
|
|
""" |
490
|
|
|
:param dir_paths: path to the directory of the data set |
491
|
|
|
:param name: name is used to identify the subdirectories or file names |
492
|
|
|
:param grouped: true if the data is grouped |
493
|
|
|
""" |
494
|
|
|
assert isinstance( |
495
|
|
|
dir_paths, list |
496
|
|
|
), f"dir_paths must be list of strings, got {dir_paths}" |
497
|
|
|
if len(set(dir_paths)) != len(dir_paths): |
498
|
|
|
raise ValueError(f"dir_paths have repeated elements: {dir_paths}") |
499
|
|
|
self.dir_paths = dir_paths |
500
|
|
|
self.name = name |
501
|
|
|
self.grouped = grouped |
502
|
|
|
# if grouped, group_struct[group_index] = list of data_index |
503
|
|
|
self.group_struct = None |
504
|
|
|
|
505
|
|
|
def set_data_structure(self): |
506
|
|
|
""" |
507
|
|
|
Store the data structure in memory to retrieve data using data_index. |
508
|
|
|
""" |
509
|
|
|
raise NotImplementedError |
510
|
|
|
|
511
|
|
|
def set_group_structure(self): |
512
|
|
|
""" |
513
|
|
|
In addition to set_data_structure, |
514
|
|
|
store the group structure in the group_struct so that |
515
|
|
|
group_struct[group_index] = list of data_index |
516
|
|
|
and data can be retrieved data by |
517
|
|
|
data_index = group_struct[group_index][in_group_data_index] |
518
|
|
|
""" |
519
|
|
|
raise NotImplementedError |
520
|
|
|
|
521
|
|
|
def get_data(self, index: Union[int, Tuple[int, ...]]) -> np.ndarray: |
522
|
|
|
""" |
523
|
|
|
Get one data array by specifying an index. |
524
|
|
|
|
525
|
|
|
:param index: the data index which is required |
526
|
|
|
|
527
|
|
|
- for paired or unpaired, the index is one single int, data_index |
528
|
|
|
- for grouped, the index is a tuple of two ints, |
529
|
|
|
(group_index, in_group_data_index) |
530
|
|
|
|
531
|
|
|
:return: the data array at the specified index |
532
|
|
|
""" |
533
|
|
|
raise NotImplementedError |
534
|
|
|
|
535
|
|
|
def get_data_ids(self) -> List: |
536
|
|
|
""" |
537
|
|
|
Return the unique IDs of the data in this data set. |
538
|
|
|
This function is used to verify the consistency between |
539
|
|
|
moving and fixed images and label. |
540
|
|
|
""" |
541
|
|
|
raise NotImplementedError |
542
|
|
|
|
543
|
|
|
def get_num_images(self) -> int: |
544
|
|
|
""" |
545
|
|
|
Return the number of image in this data set. |
546
|
|
|
|
547
|
|
|
:return: int, number of images in this data set |
548
|
|
|
""" |
549
|
|
|
raise NotImplementedError |
550
|
|
|
|
551
|
|
|
def get_num_groups(self) -> int: |
552
|
|
|
""" |
553
|
|
|
Return the number of groups in grouped data set. |
554
|
|
|
|
555
|
|
|
:return: int, number of groups in this data set, if grouped |
556
|
|
|
""" |
557
|
|
|
assert self.group_struct is not None |
558
|
|
|
return len(self.group_struct) |
559
|
|
|
|
560
|
|
|
def get_num_images_per_group(self) -> List[int]: |
|
|
|
|
561
|
|
|
""" |
562
|
|
|
Return the number of images in each group. |
563
|
|
|
Each group must have at least one image. |
564
|
|
|
|
565
|
|
|
:return: a list of integers, representing the number of images in each group. |
566
|
|
|
""" |
567
|
|
|
assert self.group_struct is not None |
568
|
|
|
num_images_per_group = [len(group) for group in self.group_struct] |
569
|
|
|
if min(num_images_per_group) == 0: |
570
|
|
|
group_ids = [ |
571
|
|
|
len(group) for group_index, group in enumerate(self.group_struct) |
572
|
|
|
] |
573
|
|
|
raise ValueError(f"Groups of ID {group_ids} are empty.") |
574
|
|
|
return num_images_per_group |
575
|
|
|
|
576
|
|
|
def close(self): |
577
|
|
|
"""Close opened file handles if exist.""" |
578
|
|
|
raise NotImplementedError |
579
|
|
|
|