|
1
|
|
|
# coding=utf-8 |
|
2
|
|
|
|
|
3
|
|
|
from typing import List, Optional, Tuple, Union |
|
4
|
|
|
|
|
5
|
|
|
import numpy as np |
|
6
|
|
|
import tensorflow as tf |
|
7
|
|
|
import tensorflow.keras.layers as tfkl |
|
8
|
|
|
from tensorflow.python.keras.utils import conv_utils |
|
9
|
|
|
|
|
10
|
|
|
from deepreg.model import layer, layer_util |
|
11
|
|
|
from deepreg.model.backbone.interface import Backbone |
|
12
|
|
|
from deepreg.model.layer import Extraction |
|
13
|
|
|
from deepreg.registry import REGISTRY |
|
14
|
|
|
|
|
15
|
|
|
EFFICIENTNET_PARAMS = { |
|
16
|
|
|
# model_name: (width_mult, depth_mult, image_size, dropout_rate, dropconnect_rate) |
|
17
|
|
|
"efficientnet-b0": (1.0, 1.0, 224, 0.2, 0.2), |
|
18
|
|
|
"efficientnet-b1": (1.0, 1.1, 240, 0.2, 0.2), |
|
19
|
|
|
"efficientnet-b2": (1.1, 1.2, 260, 0.3, 0.2), |
|
20
|
|
|
"efficientnet-b3": (1.2, 1.4, 300, 0.3, 0.2), |
|
21
|
|
|
"efficientnet-b4": (1.4, 1.8, 380, 0.4, 0.2), |
|
22
|
|
|
"efficientnet-b5": (1.6, 2.2, 456, 0.4, 0.2), |
|
23
|
|
|
"efficientnet-b6": (1.8, 2.6, 528, 0.5, 0.2), |
|
24
|
|
|
"efficientnet-b7": (2.0, 3.1, 600, 0.5, 0.2), |
|
25
|
|
|
} |
|
26
|
|
|
|
|
27
|
|
|
DEFAULT_BLOCKS_ARGS = [ |
|
28
|
|
|
{'kernel_size': 3, 'repeats': 1, 'filters_in': 32, 'filters_out': 16, |
|
29
|
|
|
'expand_ratio': 1, 'id_skip': True, 'strides': 1, 'se_ratio': 0.25}, |
|
30
|
|
|
{'kernel_size': 3, 'repeats': 2, 'filters_in': 16, 'filters_out': 24, |
|
31
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
|
32
|
|
|
{'kernel_size': 5, 'repeats': 2, 'filters_in': 24, 'filters_out': 40, |
|
33
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
|
34
|
|
|
{'kernel_size': 3, 'repeats': 3, 'filters_in': 40, 'filters_out': 80, |
|
35
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
|
36
|
|
|
{'kernel_size': 5, 'repeats': 3, 'filters_in': 80, 'filters_out': 112, |
|
37
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 1, 'se_ratio': 0.25}, |
|
38
|
|
|
{'kernel_size': 5, 'repeats': 4, 'filters_in': 112, 'filters_out': 192, |
|
39
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
|
40
|
|
|
{'kernel_size': 3, 'repeats': 1, 'filters_in': 192, 'filters_out': 320, |
|
41
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 1, 'se_ratio': 0.25} |
|
42
|
|
|
] |
|
43
|
|
|
|
|
44
|
|
View Code Duplication |
class AffineHead(tfkl.Layer): |
|
|
|
|
|
|
45
|
|
|
def __init__( |
|
46
|
|
|
self, |
|
47
|
|
|
image_size: tuple, |
|
48
|
|
|
name: str = "AffineHead", |
|
49
|
|
|
): |
|
50
|
|
|
""" |
|
51
|
|
|
Init. |
|
52
|
|
|
|
|
53
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
|
54
|
|
|
:param name: name of the layer |
|
55
|
|
|
""" |
|
56
|
|
|
super().__init__(name=name) |
|
57
|
|
|
self.reference_grid = layer_util.get_reference_grid(image_size) |
|
58
|
|
|
self.transform_initial = tf.constant_initializer( |
|
59
|
|
|
value=list(np.eye(4, 3).reshape((-1))) |
|
60
|
|
|
) |
|
61
|
|
|
self._flatten = tfkl.Flatten() |
|
62
|
|
|
self._dense = tfkl.Dense(units=12, bias_initializer=self.transform_initial) |
|
63
|
|
|
|
|
64
|
|
|
def call( |
|
65
|
|
|
self, inputs: Union[tf.Tensor, List], **kwargs |
|
66
|
|
|
) -> Tuple[tf.Tensor, tf.Tensor]: |
|
67
|
|
|
""" |
|
68
|
|
|
|
|
69
|
|
|
:param inputs: a tensor or a list of tensor with length 1 |
|
70
|
|
|
:param kwargs: additional args |
|
71
|
|
|
:return: ddf and theta |
|
72
|
|
|
|
|
73
|
|
|
- ddf has shape (batch, dim1, dim2, dim3, 3) |
|
74
|
|
|
- theta has shape (batch, 4, 3) |
|
75
|
|
|
""" |
|
76
|
|
|
if isinstance(inputs, list): |
|
77
|
|
|
inputs = inputs[0] |
|
78
|
|
|
theta = self._dense(self._flatten(inputs)) |
|
79
|
|
|
theta = tf.reshape(theta, shape=(-1, 4, 3)) |
|
80
|
|
|
# warp the reference grid with affine parameters to output a ddf |
|
81
|
|
|
grid_warped = layer_util.warp_grid(self.reference_grid, theta) |
|
82
|
|
|
ddf = grid_warped - self.reference_grid |
|
83
|
|
|
return ddf, theta |
|
84
|
|
|
|
|
85
|
|
|
def get_config(self): |
|
86
|
|
|
"""Return the config dictionary for recreating this class.""" |
|
87
|
|
|
config = super().get_config() |
|
88
|
|
|
config.update(image_size=self.reference_grid.shape[:3]) |
|
89
|
|
|
return config |
|
90
|
|
|
|
|
91
|
|
|
|
|
92
|
|
|
@REGISTRY.register_backbone(name="efficient_net") |
|
93
|
|
|
class EfficientNet(Backbone): |
|
94
|
|
|
""" |
|
95
|
|
|
Class that implements an Efficient-Net for image registration. |
|
96
|
|
|
|
|
97
|
|
|
Reference: |
|
98
|
|
|
- Author: Mingxing Tan, Quoc V. Le, |
|
99
|
|
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks |
|
100
|
|
|
https://arxiv.org/pdf/1905.11946.pdf |
|
101
|
|
|
""" |
|
102
|
|
|
|
|
103
|
|
|
def __init__( |
|
104
|
|
|
self, |
|
105
|
|
|
image_size: tuple, |
|
106
|
|
|
num_channel_initial: int, |
|
107
|
|
|
depth: int, |
|
108
|
|
|
out_kernel_initializer: str, |
|
109
|
|
|
out_activation: str, |
|
110
|
|
|
out_channels: int, |
|
111
|
|
|
extract_levels: Tuple = (0,), |
|
112
|
|
|
pooling: bool = True, |
|
113
|
|
|
concat_skip: bool = False, |
|
114
|
|
|
encode_kernel_sizes: Union[int, List[int]] = 3, |
|
115
|
|
|
decode_kernel_sizes: Union[int, List[int]] = 3, |
|
116
|
|
|
encode_num_channels: Optional[Tuple] = None, |
|
117
|
|
|
decode_num_channels: Optional[Tuple] = None, |
|
118
|
|
|
strides: int = 2, |
|
119
|
|
|
padding: str = "same", |
|
120
|
|
|
width_coefficient: float = 1.0, |
|
121
|
|
|
depth_coefficient: float = 1.0, |
|
122
|
|
|
default_size: int = 224, |
|
123
|
|
|
dropout_rate: float = 0.2, |
|
124
|
|
|
drop_connect_rate: float = 0.2, |
|
125
|
|
|
depth_divisor: int = 8, |
|
126
|
|
|
name: str = "EfficientNet", |
|
127
|
|
|
**kwargs, |
|
128
|
|
|
): |
|
129
|
|
|
""" |
|
130
|
|
|
Initialise UNet. |
|
131
|
|
|
|
|
132
|
|
|
:param image_size: (dim1, dim2, dim3), dims of input image. |
|
133
|
|
|
:param num_channel_initial: number of initial channels |
|
134
|
|
|
:param depth: input is at level 0, bottom is at level depth. |
|
135
|
|
|
:param out_kernel_initializer: kernel initializer for the last layer |
|
136
|
|
|
:param out_activation: activation at the last layer |
|
137
|
|
|
:param out_channels: number of channels for the output |
|
138
|
|
|
:param extract_levels: list, which levels from net to extract. |
|
139
|
|
|
:param pooling: for down-sampling, use non-parameterized |
|
140
|
|
|
pooling if true, otherwise use conv3d |
|
141
|
|
|
:param concat_skip: when up-sampling, concatenate skipped |
|
142
|
|
|
tensor if true, otherwise use addition |
|
143
|
|
|
:param encode_kernel_sizes: kernel size for down-sampling |
|
144
|
|
|
:param decode_kernel_sizes: kernel size for up-sampling |
|
145
|
|
|
:param encode_num_channels: filters/channels for down-sampling, |
|
146
|
|
|
by default it is doubled at each layer during down-sampling |
|
147
|
|
|
:param decode_num_channels: filters/channels for up-sampling, |
|
148
|
|
|
by default it is the same as encode_num_channels |
|
149
|
|
|
:param strides: strides for down-sampling |
|
150
|
|
|
:param padding: padding mode for all conv layers |
|
151
|
|
|
:param width_coefficient: float, scaling coefficient for network width. |
|
152
|
|
|
:param depth_coefficient: float, scaling coefficient for network depth. |
|
153
|
|
|
:param default_size: int, default input image size. |
|
154
|
|
|
:param dropout_rate: float, dropout rate before final classifier layer. |
|
155
|
|
|
:param drop_connect_rate: float, dropout rate at skip connections. |
|
156
|
|
|
:param depth_divisor: int divisor for depth. |
|
157
|
|
|
:param name: name of the backbone. |
|
158
|
|
|
:param kwargs: additional arguments. |
|
159
|
|
|
""" |
|
160
|
|
|
super().__init__( |
|
161
|
|
|
image_size=image_size, |
|
162
|
|
|
out_channels=out_channels, |
|
163
|
|
|
num_channel_initial=num_channel_initial, |
|
164
|
|
|
out_kernel_initializer=out_kernel_initializer, |
|
165
|
|
|
out_activation=out_activation, |
|
166
|
|
|
name=name, |
|
167
|
|
|
**kwargs, |
|
168
|
|
|
) |
|
169
|
|
|
|
|
170
|
|
|
# save parameters |
|
171
|
|
|
assert max(extract_levels) <= depth |
|
172
|
|
|
self._extract_levels = extract_levels |
|
173
|
|
|
self._depth = depth |
|
174
|
|
|
|
|
175
|
|
|
# save extra parameters |
|
176
|
|
|
self._concat_skip = concat_skip |
|
177
|
|
|
self._pooling = pooling |
|
178
|
|
|
self._encode_kernel_sizes = encode_kernel_sizes |
|
179
|
|
|
self._decode_kernel_sizes = decode_kernel_sizes |
|
180
|
|
|
self._encode_num_channels = encode_num_channels |
|
181
|
|
|
self._decode_num_channels = decode_num_channels |
|
182
|
|
|
self._strides = strides |
|
183
|
|
|
self._padding = padding |
|
184
|
|
|
|
|
185
|
|
|
# efficient parameters |
|
186
|
|
|
self._width_coefficient = width_coefficient |
|
187
|
|
|
self._depth_coefficient = depth_coefficient |
|
188
|
|
|
self._default_size = default_size |
|
189
|
|
|
self._dropout_rate = dropout_rate |
|
190
|
|
|
self._drop_connect_rate = drop_connect_rate |
|
191
|
|
|
self._depth_divisor = depth_divisor |
|
192
|
|
|
self._activation_fn = tf.nn.swish |
|
193
|
|
|
|
|
194
|
|
|
# init layers |
|
195
|
|
|
# all lists start with d = 0 |
|
196
|
|
|
self._encode_convs: List[tfkl.Layer] = [] |
|
197
|
|
|
self._encode_pools: List[tfkl.Layer] = [] |
|
198
|
|
|
self._bottom_block = None |
|
199
|
|
|
self._decode_convs: List[tfkl.Layer] = [] |
|
200
|
|
|
self._output_block = None |
|
201
|
|
|
|
|
202
|
|
|
# build layers |
|
203
|
|
|
self.build_layers( |
|
204
|
|
|
image_size=image_size, |
|
205
|
|
|
num_channel_initial=num_channel_initial, |
|
206
|
|
|
depth=depth, |
|
207
|
|
|
extract_levels=extract_levels, |
|
208
|
|
|
encode_kernel_sizes=encode_kernel_sizes, |
|
209
|
|
|
decode_kernel_sizes=decode_kernel_sizes, |
|
210
|
|
|
encode_num_channels=encode_num_channels, |
|
211
|
|
|
decode_num_channels=decode_num_channels, |
|
212
|
|
|
strides=strides, |
|
213
|
|
|
padding=padding, |
|
214
|
|
|
out_kernel_initializer=out_kernel_initializer, |
|
215
|
|
|
out_activation=out_activation, |
|
216
|
|
|
out_channels=out_channels, |
|
217
|
|
|
) |
|
218
|
|
|
|
|
219
|
|
|
def build_encode_conv_block( |
|
220
|
|
|
self, filters: int, kernel_size: int, padding: str |
|
221
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
|
222
|
|
|
""" |
|
223
|
|
|
Build a conv block for down-sampling |
|
224
|
|
|
|
|
225
|
|
|
This block do not change the tensor shape (width, height, depth), |
|
226
|
|
|
it only changes the number of channels. |
|
227
|
|
|
|
|
228
|
|
|
:param filters: number of channels for output |
|
229
|
|
|
:param kernel_size: arg for conv3d |
|
230
|
|
|
:param padding: arg for conv3d |
|
231
|
|
|
:return: a block consists of one or multiple layers |
|
232
|
|
|
""" |
|
233
|
|
|
return tf.keras.Sequential( |
|
234
|
|
|
[ |
|
235
|
|
|
layer.Conv3dBlock( |
|
236
|
|
|
filters=filters, |
|
237
|
|
|
kernel_size=kernel_size, |
|
238
|
|
|
padding=padding, |
|
239
|
|
|
), |
|
240
|
|
|
layer.ResidualConv3dBlock( |
|
241
|
|
|
filters=filters, |
|
242
|
|
|
kernel_size=kernel_size, |
|
243
|
|
|
padding=padding, |
|
244
|
|
|
), |
|
245
|
|
|
] |
|
246
|
|
|
) |
|
247
|
|
|
|
|
248
|
|
|
def build_down_sampling_block( |
|
249
|
|
|
self, filters: int, kernel_size: int, padding: str, strides: int |
|
250
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
|
251
|
|
|
""" |
|
252
|
|
|
Build a block for down-sampling. |
|
253
|
|
|
|
|
254
|
|
|
This block changes the tensor shape (width, height, depth), |
|
255
|
|
|
but it does not changes the number of channels. |
|
256
|
|
|
|
|
257
|
|
|
:param filters: number of channels for output, arg for conv3d |
|
258
|
|
|
:param kernel_size: arg for pool3d or conv3d |
|
259
|
|
|
:param padding: arg for pool3d or conv3d |
|
260
|
|
|
:param strides: arg for pool3d or conv3d |
|
261
|
|
|
:return: a block consists of one or multiple layers |
|
262
|
|
|
""" |
|
263
|
|
|
if self._pooling: |
|
264
|
|
|
return tfkl.MaxPool3D( |
|
265
|
|
|
pool_size=kernel_size, strides=strides, padding=padding |
|
266
|
|
|
) |
|
267
|
|
|
else: |
|
268
|
|
|
return layer.Conv3dBlock( |
|
269
|
|
|
filters=filters, |
|
270
|
|
|
kernel_size=kernel_size, |
|
271
|
|
|
strides=strides, |
|
272
|
|
|
padding=padding, |
|
273
|
|
|
) |
|
274
|
|
|
|
|
275
|
|
|
def build_bottom_block( |
|
276
|
|
|
self, filters: int, kernel_size: int, padding: str |
|
277
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
|
278
|
|
|
""" |
|
279
|
|
|
Build a block for bottom layer. |
|
280
|
|
|
|
|
281
|
|
|
This block do not change the tensor shape (width, height, depth), |
|
282
|
|
|
it only changes the number of channels. |
|
283
|
|
|
|
|
284
|
|
|
:param filters: number of channels for output |
|
285
|
|
|
:param kernel_size: arg for conv3d |
|
286
|
|
|
:param padding: arg for conv3d |
|
287
|
|
|
:return: a block consists of one or multiple layers |
|
288
|
|
|
""" |
|
289
|
|
|
return tf.keras.Sequential( |
|
290
|
|
|
[ |
|
291
|
|
|
layer.Conv3dBlock( |
|
292
|
|
|
filters=filters, |
|
293
|
|
|
kernel_size=kernel_size, |
|
294
|
|
|
padding=padding, |
|
295
|
|
|
), |
|
296
|
|
|
layer.ResidualConv3dBlock( |
|
297
|
|
|
filters=filters, |
|
298
|
|
|
kernel_size=kernel_size, |
|
299
|
|
|
padding=padding, |
|
300
|
|
|
), |
|
301
|
|
|
] |
|
302
|
|
|
) |
|
303
|
|
|
|
|
304
|
|
|
def build_output_block( |
|
305
|
|
|
self, |
|
306
|
|
|
image_size: Tuple[int, ...], |
|
307
|
|
|
extract_levels: Tuple[int, ...], |
|
308
|
|
|
out_channels: int, |
|
309
|
|
|
out_kernel_initializer: str, |
|
310
|
|
|
out_activation: str, |
|
311
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
|
312
|
|
|
""" |
|
313
|
|
|
Build a block for output. |
|
314
|
|
|
|
|
315
|
|
|
The input to this block is a list of length 1. |
|
316
|
|
|
The output has two tensors. |
|
317
|
|
|
|
|
318
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
|
319
|
|
|
:param extract_levels: not used |
|
320
|
|
|
:param out_channels: not used |
|
321
|
|
|
:param out_kernel_initializer: not used |
|
322
|
|
|
:param out_activation: not used |
|
323
|
|
|
:return: a block consists of one or multiple layers |
|
324
|
|
|
""" |
|
325
|
|
|
return AffineHead(image_size=image_size) |
|
326
|
|
|
|
|
327
|
|
|
def build_layers( |
|
328
|
|
|
self, |
|
329
|
|
|
image_size: tuple, |
|
330
|
|
|
num_channel_initial: int, |
|
331
|
|
|
depth: int, |
|
332
|
|
|
extract_levels: Tuple[int, ...], |
|
333
|
|
|
encode_kernel_sizes: Union[int, List[int]], |
|
334
|
|
|
decode_kernel_sizes: Union[int, List[int]], |
|
335
|
|
|
encode_num_channels: Optional[Tuple], |
|
336
|
|
|
decode_num_channels: Optional[Tuple], |
|
337
|
|
|
strides: int, |
|
338
|
|
|
padding: str, |
|
339
|
|
|
out_kernel_initializer: str, |
|
340
|
|
|
out_activation: str, |
|
341
|
|
|
out_channels: int, |
|
342
|
|
|
): |
|
343
|
|
|
""" |
|
344
|
|
|
Build layers that will be used in call. |
|
345
|
|
|
|
|
346
|
|
|
:param image_size: (dim1, dim2, dim3). |
|
347
|
|
|
:param num_channel_initial: number of initial channels. |
|
348
|
|
|
:param depth: network starts with d = 0, and the bottom has d = depth. |
|
349
|
|
|
:param extract_levels: from which depths the output will be built. |
|
350
|
|
|
:param encode_kernel_sizes: kernel size for down-sampling |
|
351
|
|
|
:param decode_kernel_sizes: kernel size for up-sampling |
|
352
|
|
|
:param encode_num_channels: filters/channels for down-sampling, |
|
353
|
|
|
by default it is doubled at each layer during down-sampling |
|
354
|
|
|
:param decode_num_channels: filters/channels for up-sampling, |
|
355
|
|
|
by default it is the same as encode_num_channels |
|
356
|
|
|
:param strides: strides for down-sampling |
|
357
|
|
|
:param padding: padding mode for all conv layers |
|
358
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
|
359
|
|
|
:param out_activation: activation to use at end layer. |
|
360
|
|
|
:param out_channels: number of channels for the extractions |
|
361
|
|
|
""" |
|
362
|
|
|
if encode_num_channels is None: |
|
363
|
|
|
assert num_channel_initial >= 1 |
|
364
|
|
|
encode_num_channels = tuple( |
|
365
|
|
|
num_channel_initial * (2 ** d) for d in range(depth + 1) |
|
366
|
|
|
) |
|
367
|
|
|
assert len(encode_num_channels) == depth + 1 |
|
368
|
|
|
tensor_shapes = self.build_encode_layers( |
|
369
|
|
|
image_size=image_size, |
|
370
|
|
|
num_channels=encode_num_channels, |
|
371
|
|
|
depth=depth, |
|
372
|
|
|
encode_kernel_sizes=encode_kernel_sizes, |
|
373
|
|
|
strides=strides, |
|
374
|
|
|
padding=padding, |
|
375
|
|
|
) |
|
376
|
|
|
self._output_block = self.build_output_block( |
|
377
|
|
|
image_size=image_size, |
|
378
|
|
|
extract_levels=extract_levels, |
|
379
|
|
|
out_channels=out_channels, |
|
380
|
|
|
out_kernel_initializer=out_kernel_initializer, |
|
381
|
|
|
out_activation=out_activation, |
|
382
|
|
|
) |
|
383
|
|
|
|
|
384
|
|
View Code Duplication |
def build_encode_layers( |
|
|
|
|
|
|
385
|
|
|
self, |
|
386
|
|
|
image_size: Tuple, |
|
387
|
|
|
num_channels: Tuple, |
|
388
|
|
|
depth: int, |
|
389
|
|
|
encode_kernel_sizes: Union[int, List[int]], |
|
390
|
|
|
strides: int, |
|
391
|
|
|
padding: str, |
|
392
|
|
|
) -> List[Tuple]: |
|
393
|
|
|
""" |
|
394
|
|
|
Build layers for encoding. |
|
395
|
|
|
|
|
396
|
|
|
:param image_size: (dim1, dim2, dim3). |
|
397
|
|
|
:param num_channels: number of channels for each layer, |
|
398
|
|
|
starting from the top layer. |
|
399
|
|
|
:param depth: network starts with d = 0, and the bottom has d = depth. |
|
400
|
|
|
:param encode_kernel_sizes: kernel size for down-sampling |
|
401
|
|
|
:param strides: strides for down-sampling |
|
402
|
|
|
:param padding: padding mode for all conv layers |
|
403
|
|
|
:return: list of tensor shapes starting from d = 0 |
|
404
|
|
|
""" |
|
405
|
|
|
if isinstance(encode_kernel_sizes, int): |
|
406
|
|
|
encode_kernel_sizes = [encode_kernel_sizes] * (depth + 1) |
|
407
|
|
|
assert len(encode_kernel_sizes) == depth + 1 |
|
408
|
|
|
|
|
409
|
|
|
# encoding / down-sampling |
|
410
|
|
|
self._encode_convs = [] |
|
411
|
|
|
self._encode_pools = [] |
|
412
|
|
|
tensor_shape = image_size |
|
413
|
|
|
tensor_shapes = [tensor_shape] |
|
414
|
|
|
for d in range(depth): |
|
415
|
|
|
encode_conv = self.build_encode_conv_block( |
|
416
|
|
|
filters=num_channels[d], |
|
417
|
|
|
kernel_size=encode_kernel_sizes[d], |
|
418
|
|
|
padding=padding, |
|
419
|
|
|
) |
|
420
|
|
|
encode_pool = self.build_down_sampling_block( |
|
421
|
|
|
filters=num_channels[d], |
|
422
|
|
|
kernel_size=strides, |
|
423
|
|
|
strides=strides, |
|
424
|
|
|
padding=padding, |
|
425
|
|
|
) |
|
426
|
|
|
tensor_shape = tuple( |
|
427
|
|
|
conv_utils.conv_output_length( |
|
428
|
|
|
input_length=x, |
|
429
|
|
|
filter_size=strides, |
|
430
|
|
|
padding=padding, |
|
431
|
|
|
stride=strides, |
|
432
|
|
|
dilation=1, |
|
433
|
|
|
) |
|
434
|
|
|
for x in tensor_shape |
|
435
|
|
|
) |
|
436
|
|
|
self._encode_convs.append(encode_conv) |
|
437
|
|
|
self._encode_pools.append(encode_pool) |
|
438
|
|
|
tensor_shapes.append(tensor_shape) |
|
439
|
|
|
|
|
440
|
|
|
# bottom layer |
|
441
|
|
|
self._bottom_block = self.build_bottom_block( |
|
442
|
|
|
filters=num_channels[depth], |
|
443
|
|
|
kernel_size=encode_kernel_sizes[depth], |
|
444
|
|
|
padding=padding, |
|
445
|
|
|
) |
|
446
|
|
|
return tensor_shapes |
|
447
|
|
|
|
|
448
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
449
|
|
|
""" |
|
450
|
|
|
Build compute graph based on built layers. |
|
451
|
|
|
|
|
452
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
|
453
|
|
|
:param training: None or bool. |
|
454
|
|
|
:param mask: None or tf.Tensor. |
|
455
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
|
456
|
|
|
""" |
|
457
|
|
|
|
|
458
|
|
|
# encoding / down-sampling |
|
459
|
|
|
# skips = [] |
|
460
|
|
|
# encoded = inputs |
|
461
|
|
|
# for d in range(self._depth): |
|
462
|
|
|
# skip = self._encode_convs[d](inputs=encoded, training=training) |
|
463
|
|
|
# encoded = self._encode_pools[d](inputs=skip, training=training) |
|
464
|
|
|
# skips.append(skip) |
|
465
|
|
|
|
|
466
|
|
|
# bottom |
|
467
|
|
|
# decoded = self._bottom_block(inputs=encoded, training=training) # type: ignore |
|
468
|
|
|
|
|
469
|
|
|
# decoding / up-sampling. TODO(SicongLu): Add efficient_net based decoder. |
|
470
|
|
|
|
|
471
|
|
|
# output |
|
472
|
|
|
decoded = self.build_efficient_net(inputs=encoded) # type: ignore |
|
|
|
|
|
|
473
|
|
|
outs = [decoded] |
|
474
|
|
|
output = self._output_block(outs) # type: ignore |
|
475
|
|
|
|
|
476
|
|
|
return output |
|
477
|
|
|
|
|
478
|
|
|
def build_efficient_net(self, inputs: tf.Tensor, training=None) -> tf.Tensor: |
|
479
|
|
|
""" |
|
480
|
|
|
Builds graph based on built layers. |
|
481
|
|
|
|
|
482
|
|
|
:param inputs: shape = (batch, f_dim1, f_dim2, f_dim3, in_channels) |
|
483
|
|
|
:param training: |
|
484
|
|
|
:param mask: |
|
485
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
|
486
|
|
|
""" |
|
487
|
|
|
x = inputs |
|
488
|
|
|
x = layers.Conv3D(32, 3, |
|
|
|
|
|
|
489
|
|
|
strides=1, |
|
490
|
|
|
padding='same', |
|
491
|
|
|
use_bias=False, |
|
492
|
|
|
# kernel_initializer=CONV_KERNEL_INITIALIZER, |
|
493
|
|
|
name='stem_conv')(x) |
|
494
|
|
|
x = layers.BatchNormalization(axis=4, name='stem_bn')(x) |
|
495
|
|
|
x = layers.Activation(self.activation_fn, name='stem_activation')(x) |
|
496
|
|
|
blocks_args = deepcopy(DEFAULT_BLOCKS_ARGS) |
|
|
|
|
|
|
497
|
|
|
|
|
498
|
|
|
b = 0 |
|
499
|
|
|
# Calculate the number of blocks |
|
500
|
|
|
blocks = float(sum(args['repeats'] for args in blocks_args)) |
|
501
|
|
|
for (i, args) in enumerate(blocks_args): |
|
502
|
|
|
assert args['repeats'] > 0 |
|
503
|
|
|
args['filters_in'] = self.round_filters(args['filters_in']) |
|
504
|
|
|
args['filters_out'] = self.round_filters(args['filters_out']) |
|
505
|
|
|
|
|
506
|
|
|
for j in range(self.round_repeats(args.pop('repeats'))): |
|
507
|
|
|
if j > 0: |
|
508
|
|
|
args['strides'] = 1 |
|
509
|
|
|
args['filters_in'] = args['filters_out'] |
|
510
|
|
|
x = self.block(x, self.activation_fn, self.drop_connect_rate * b / blocks, |
|
511
|
|
|
name='block{}{}_'.format(i + 1, chr(j + 97)), **args) |
|
512
|
|
|
b += 1 |
|
513
|
|
|
|
|
514
|
|
|
x = layers.Conv3D(128, 1, |
|
515
|
|
|
padding='same', |
|
516
|
|
|
use_bias=False, |
|
517
|
|
|
name='top_conv')(x) |
|
518
|
|
|
x = layers.BatchNormalization(axis=4, name='top_bn')(x) |
|
519
|
|
|
x = layers.Activation(self.activation_fn, name='top_activation')(x) |
|
520
|
|
|
|
|
521
|
|
|
return x |
|
522
|
|
|
|
|
523
|
|
|
def round_filters(self, filters): |
|
524
|
|
|
"""Round number of filters based on depth multiplier.""" |
|
525
|
|
|
filters *= self.width_coefficient |
|
526
|
|
|
divisor = self.depth_divisor |
|
527
|
|
|
new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor) |
|
528
|
|
|
# Make sure that round down does not go down by more than 10%. |
|
529
|
|
|
if new_filters < 0.9 * filters: |
|
530
|
|
|
new_filters += divisor |
|
531
|
|
|
return int(new_filters) |
|
532
|
|
|
|
|
533
|
|
|
def round_repeats(self, repeats): |
|
534
|
|
|
return int(math.ceil(self.depth_coefficient * repeats)) |
|
|
|
|
|
|
535
|
|
|
|
|
536
|
|
|
def block(self, inputs, activation_fn=tf.nn.swish, drop_rate=0., name='', |
|
537
|
|
|
filters_in=32, filters_out=16, kernel_size=3, strides=1, |
|
538
|
|
|
expand_ratio=1, se_ratio=0., id_skip=True): |
|
539
|
|
|
filters = filters_in * expand_ratio |
|
540
|
|
|
|
|
541
|
|
|
# Inverted residuals |
|
542
|
|
|
if expand_ratio != 1: |
|
543
|
|
|
x = layers.Conv3D(filters, 1, |
|
|
|
|
|
|
544
|
|
|
padding='same', |
|
545
|
|
|
use_bias=False, |
|
546
|
|
|
name=name + 'expand_conv')(inputs) |
|
547
|
|
|
x = layers.BatchNormalization(axis=4, name=name + 'expand_bn')(x) |
|
548
|
|
|
x = layers.Activation(activation_fn, name=name + 'expand_activation')(x) |
|
549
|
|
|
else: |
|
550
|
|
|
x = inputs |
|
551
|
|
|
|
|
552
|
|
|
if 0 < se_ratio <= 1: |
|
553
|
|
|
filters_se = max(1, int(filters_in * se_ratio)) |
|
554
|
|
|
se = layers.GlobalAveragePooling3D(name=name + 'se_squeeze')(x) |
|
555
|
|
|
se = layers.Reshape((1, 1, 1, filters), name=name + 'se_reshape')(se) |
|
556
|
|
|
se = layers.Conv3D(filters_se, 1, |
|
557
|
|
|
padding='same', |
|
558
|
|
|
activation=activation_fn, |
|
559
|
|
|
name=name + 'se_reduce')(se) |
|
560
|
|
|
se = layers.Conv3D(filters, 1, |
|
561
|
|
|
padding='same', |
|
562
|
|
|
activation='sigmoid', |
|
563
|
|
|
name=name + 'se_expand')(se) |
|
564
|
|
|
x = layers.multiply([x, se], name=name + 'se_excite') |
|
565
|
|
|
|
|
566
|
|
|
x = layers.Conv3D(filters_out, 1, |
|
567
|
|
|
padding='same', |
|
568
|
|
|
use_bias=False, |
|
569
|
|
|
name=name + 'project_conv')(x) |
|
570
|
|
|
x = layers.BatchNormalization(axis=4, name=name + 'project_bn')(x) |
|
571
|
|
|
|
|
572
|
|
|
if (id_skip is True and strides == 1 and filters_in == filters_out): |
|
573
|
|
|
if drop_rate > 0: |
|
574
|
|
|
x = layers.Dropout(drop_rate, |
|
575
|
|
|
noise_shape=None, |
|
576
|
|
|
name=name + 'drop')(x) |
|
577
|
|
|
x = layers.add([x, inputs], name=name + 'add') |
|
578
|
|
|
|
|
579
|
|
|
return x |
|
580
|
|
|
|
|
581
|
|
|
|
|
582
|
|
|
|
|
583
|
|
|
def get_config(self) -> dict: |
|
584
|
|
|
"""Return the config dictionary for recreating this class.""" |
|
585
|
|
|
config = super().get_config() |
|
586
|
|
|
config.update( |
|
587
|
|
|
depth=self._depth, |
|
588
|
|
|
extract_levels=self._extract_levels, |
|
589
|
|
|
pooling=self._pooling, |
|
590
|
|
|
concat_skip=self._concat_skip, |
|
591
|
|
|
encode_kernel_sizes=self._encode_kernel_sizes, |
|
592
|
|
|
decode_kernel_sizes=self._decode_kernel_sizes, |
|
593
|
|
|
encode_num_channels=self._encode_num_channels, |
|
594
|
|
|
decode_num_channels=self._decode_num_channels, |
|
595
|
|
|
strides=self._strides, |
|
596
|
|
|
padding=self._padding, |
|
597
|
|
|
) |
|
598
|
|
|
return config |
|
599
|
|
|
|