1
|
|
|
# https://github.com/alexandrosstergiou/keras-DepthwiseConv3D |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
''' |
5
|
|
|
This is a modification of the SeparableConv3D code in Keras, |
6
|
|
|
to perform just the Depthwise Convolution (1st step) of the |
7
|
|
|
Depthwise Separable Convolution layer. |
8
|
|
|
''' |
9
|
|
|
from __future__ import absolute_import |
10
|
|
|
|
11
|
|
|
from keras import backend as K |
12
|
|
|
from keras import initializers |
13
|
|
|
from keras import regularizers |
14
|
|
|
from keras import constraints |
15
|
|
|
from keras import layers |
16
|
|
|
from keras.engine import InputSpec |
17
|
|
|
from keras.utils import conv_utils |
18
|
|
|
from keras.legacy.interfaces import conv3d_args_preprocessor, generate_legacy_interface |
19
|
|
|
from keras.layers import Conv3D |
20
|
|
|
from keras.backend.tensorflow_backend import _preprocess_padding, _preprocess_conv3d_input |
21
|
|
|
|
22
|
|
|
import tensorflow as tf |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def depthwise_conv3d_args_preprocessor(args, kwargs): |
26
|
|
|
converted = [] |
27
|
|
|
|
28
|
|
|
if 'init' in kwargs: |
29
|
|
|
init = kwargs.pop('init') |
30
|
|
|
kwargs['depthwise_initializer'] = init |
31
|
|
|
converted.append(('init', 'depthwise_initializer')) |
32
|
|
|
|
33
|
|
|
args, kwargs, _converted = conv3d_args_preprocessor(args, kwargs) |
34
|
|
|
return args, kwargs, converted + _converted |
35
|
|
|
|
36
|
|
|
legacy_depthwise_conv3d_support = generate_legacy_interface( |
37
|
|
|
allowed_positional_args=['filters', 'kernel_size'], |
38
|
|
|
conversions=[('nb_filter', 'filters'), |
39
|
|
|
('subsample', 'strides'), |
40
|
|
|
('border_mode', 'padding'), |
41
|
|
|
('dim_ordering', 'data_format'), |
42
|
|
|
('b_regularizer', 'bias_regularizer'), |
43
|
|
|
('b_constraint', 'bias_constraint'), |
44
|
|
|
('bias', 'use_bias')], |
45
|
|
|
value_conversions={'dim_ordering': {'tf': 'channels_last', |
46
|
|
|
'th': 'channels_first', |
47
|
|
|
'default': None}}, |
48
|
|
|
preprocessor=depthwise_conv3d_args_preprocessor) |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
class DepthwiseConv3D(Conv3D): |
52
|
|
|
"""Depthwise 3D convolution. |
53
|
|
|
Depth-wise part of separable convolutions consist in performing |
54
|
|
|
just the first step/operation |
55
|
|
|
(which acts on each input channel separately). |
56
|
|
|
It does not perform the pointwise convolution (second step). |
57
|
|
|
The `depth_multiplier` argument controls how many |
58
|
|
|
output channels are generated per input channel in the depthwise step. |
59
|
|
|
# Arguments |
60
|
|
|
kernel_size: An integer or tuple/list of 3 integers, specifying the |
61
|
|
|
depth, width and height of the 3D convolution window. |
62
|
|
|
Can be a single integer to specify the same value for |
63
|
|
|
all spatial dimensions. |
64
|
|
|
strides: An integer or tuple/list of 3 integers, |
65
|
|
|
specifying the strides of the convolution along the depth, width and height. |
66
|
|
|
Can be a single integer to specify the same value for |
67
|
|
|
all spatial dimensions. |
68
|
|
|
padding: one of `"valid"` or `"same"` (case-insensitive). |
69
|
|
|
depth_multiplier: The number of depthwise convolution output channels |
70
|
|
|
for each input channel. |
71
|
|
|
The total number of depthwise convolution output |
72
|
|
|
channels will be equal to `filterss_in * depth_multiplier`. |
73
|
|
|
groups: The depth size of the convolution (as a variant of the original Depthwise conv) |
74
|
|
|
data_format: A string, |
75
|
|
|
one of `channels_last` (default) or `channels_first`. |
76
|
|
|
The ordering of the dimensions in the inputs. |
77
|
|
|
`channels_last` corresponds to inputs with shape |
78
|
|
|
`(batch, height, width, channels)` while `channels_first` |
79
|
|
|
corresponds to inputs with shape |
80
|
|
|
`(batch, channels, height, width)`. |
81
|
|
|
It defaults to the `image_data_format` value found in your |
82
|
|
|
Keras config file at `~/.keras/keras.json`. |
83
|
|
|
If you never set it, then it will be "channels_last". |
84
|
|
|
activation: Activation function to use |
85
|
|
|
(see [activations](../activations.md)). |
86
|
|
|
If you don't specify anything, no activation is applied |
87
|
|
|
(ie. "linear" activation: `a(x) = x`). |
88
|
|
|
use_bias: Boolean, whether the layer uses a bias vector. |
89
|
|
|
depthwise_initializer: Initializer for the depthwise kernel matrix |
90
|
|
|
(see [initializers](../initializers.md)). |
91
|
|
|
bias_initializer: Initializer for the bias vector |
92
|
|
|
(see [initializers](../initializers.md)). |
93
|
|
|
depthwise_regularizer: Regularizer function applied to |
94
|
|
|
the depthwise kernel matrix |
95
|
|
|
(see [regularizer](../regularizers.md)). |
96
|
|
|
bias_regularizer: Regularizer function applied to the bias vector |
97
|
|
|
(see [regularizer](../regularizers.md)). |
98
|
|
|
dialation_rate: List of ints. |
99
|
|
|
Defines the dilation factor for each dimension in the |
100
|
|
|
input. Defaults to (1,1,1) |
101
|
|
|
activity_regularizer: Regularizer function applied to |
102
|
|
|
the output of the layer (its "activation"). |
103
|
|
|
(see [regularizer](../regularizers.md)). |
104
|
|
|
depthwise_constraint: Constraint function applied to |
105
|
|
|
the depthwise kernel matrix |
106
|
|
|
(see [constraints](../constraints.md)). |
107
|
|
|
bias_constraint: Constraint function applied to the bias vector |
108
|
|
|
(see [constraints](../constraints.md)). |
109
|
|
|
# Input shape |
110
|
|
|
5D tensor with shape: |
111
|
|
|
`(batch, depth, channels, rows, cols)` if data_format='channels_first' |
112
|
|
|
or 5D tensor with shape: |
113
|
|
|
`(batch, depth, rows, cols, channels)` if data_format='channels_last'. |
114
|
|
|
# Output shape |
115
|
|
|
5D tensor with shape: |
116
|
|
|
`(batch, filters * depth, new_depth, new_rows, new_cols)` if data_format='channels_first' |
117
|
|
|
or 4D tensor with shape: |
118
|
|
|
`(batch, new_depth, new_rows, new_cols, filters * depth)` if data_format='channels_last'. |
119
|
|
|
`rows` and `cols` values might have changed due to padding. |
120
|
|
|
""" |
121
|
|
|
|
122
|
|
|
#@legacy_depthwise_conv3d_support |
123
|
|
|
def __init__(self, |
124
|
|
|
kernel_size, |
125
|
|
|
strides=(1, 1, 1), |
126
|
|
|
padding='valid', |
127
|
|
|
depth_multiplier=1, |
128
|
|
|
groups=None, |
129
|
|
|
data_format=None, |
130
|
|
|
activation=None, |
131
|
|
|
use_bias=True, |
132
|
|
|
depthwise_initializer='glorot_uniform', |
133
|
|
|
bias_initializer='zeros', |
134
|
|
|
dilation_rate = (1, 1, 1), |
135
|
|
|
depthwise_regularizer=None, |
136
|
|
|
bias_regularizer=None, |
137
|
|
|
activity_regularizer=None, |
138
|
|
|
depthwise_constraint=None, |
139
|
|
|
bias_constraint=None, |
140
|
|
|
**kwargs): |
141
|
|
|
super(DepthwiseConv3D, self).__init__( |
142
|
|
|
filters=None, |
143
|
|
|
kernel_size=kernel_size, |
144
|
|
|
strides=strides, |
145
|
|
|
padding=padding, |
146
|
|
|
data_format=data_format, |
147
|
|
|
activation=activation, |
148
|
|
|
use_bias=use_bias, |
149
|
|
|
bias_regularizer=bias_regularizer, |
150
|
|
|
dilation_rate=dilation_rate, |
151
|
|
|
activity_regularizer=activity_regularizer, |
152
|
|
|
bias_constraint=bias_constraint, |
153
|
|
|
**kwargs) |
154
|
|
|
self.depth_multiplier = depth_multiplier |
155
|
|
|
self.groups = groups |
156
|
|
|
self.depthwise_initializer = initializers.get(depthwise_initializer) |
157
|
|
|
self.depthwise_regularizer = regularizers.get(depthwise_regularizer) |
158
|
|
|
self.depthwise_constraint = constraints.get(depthwise_constraint) |
159
|
|
|
self.bias_initializer = initializers.get(bias_initializer) |
160
|
|
|
self.dilation_rate = dilation_rate |
161
|
|
|
self._padding = _preprocess_padding(self.padding) |
162
|
|
|
self._strides = (1,) + self.strides + (1,) |
163
|
|
|
self._data_format = "NDHWC" |
164
|
|
|
self.input_dim = None |
165
|
|
|
|
166
|
|
|
def build(self, input_shape): |
167
|
|
|
if len(input_shape) < 5: |
168
|
|
|
raise ValueError('Inputs to `DepthwiseConv3D` should have rank 5. ' |
169
|
|
|
'Received input shape:', str(input_shape)) |
170
|
|
|
if self.data_format == 'channels_first': |
171
|
|
|
channel_axis = 1 |
172
|
|
|
else: |
173
|
|
|
channel_axis = -1 |
174
|
|
|
if input_shape[channel_axis] is None: |
175
|
|
|
raise ValueError('The channel dimension of the inputs to ' |
176
|
|
|
'`DepthwiseConv3D` ' |
177
|
|
|
'should be defined. Found `None`.') |
178
|
|
|
self.input_dim = int(input_shape[channel_axis]) |
179
|
|
|
|
180
|
|
|
if self.groups is None: |
181
|
|
|
self.groups = self.input_dim |
182
|
|
|
|
183
|
|
|
if self.groups > self.input_dim: |
184
|
|
|
raise ValueError('The number of groups cannot exceed the number of channels') |
185
|
|
|
|
186
|
|
|
if self.input_dim % self.groups != 0: |
187
|
|
|
raise ValueError('Warning! The channels dimension is not divisible by the group size chosen') |
188
|
|
|
|
189
|
|
|
depthwise_kernel_shape = (self.kernel_size[0], |
190
|
|
|
self.kernel_size[1], |
191
|
|
|
self.kernel_size[2], |
192
|
|
|
self.input_dim, |
193
|
|
|
self.depth_multiplier) |
194
|
|
|
|
195
|
|
|
self.depthwise_kernel = self.add_weight( |
196
|
|
|
shape=depthwise_kernel_shape, |
197
|
|
|
initializer=self.depthwise_initializer, |
198
|
|
|
name='depthwise_kernel', |
199
|
|
|
regularizer=self.depthwise_regularizer, |
200
|
|
|
constraint=self.depthwise_constraint) |
201
|
|
|
|
202
|
|
|
if self.use_bias: |
203
|
|
|
self.bias = self.add_weight(shape=(self.groups * self.depth_multiplier,), |
204
|
|
|
initializer=self.bias_initializer, |
205
|
|
|
name='bias', |
206
|
|
|
regularizer=self.bias_regularizer, |
207
|
|
|
constraint=self.bias_constraint) |
208
|
|
|
else: |
209
|
|
|
self.bias = None |
210
|
|
|
# Set input spec. |
211
|
|
|
self.input_spec = InputSpec(ndim=5, axes={channel_axis: self.input_dim}) |
212
|
|
|
self.built = True |
213
|
|
|
|
214
|
|
|
def call(self, inputs, training=None): |
215
|
|
|
inputs = _preprocess_conv3d_input(inputs, self.data_format) |
216
|
|
|
|
217
|
|
|
if self.data_format == 'channels_last': |
218
|
|
|
dilation = (1,) + self.dilation_rate + (1,) |
219
|
|
|
else: |
220
|
|
|
dilation = self.dilation_rate + (1,) + (1,) |
221
|
|
|
|
222
|
|
|
if self._data_format == 'NCDHW': |
223
|
|
|
outputs = tf.concat( |
224
|
|
|
[tf.nn.conv3d(inputs[0][:, i:i+self.input_dim//self.groups, :, :, :], self.depthwise_kernel[:, :, :, i:i+self.input_dim//self.groups, :], |
225
|
|
|
strides=self._strides, |
226
|
|
|
padding=self._padding, |
227
|
|
|
dilations=dilation, |
228
|
|
|
data_format=self._data_format) for i in range(0, self.input_dim, self.input_dim//self.groups)], axis=1) |
229
|
|
|
|
230
|
|
|
else: |
231
|
|
|
outputs = tf.concat( |
232
|
|
|
[tf.nn.conv3d(inputs[0][:, :, :, :, i:i+self.input_dim//self.groups], self.depthwise_kernel[:, :, :, i:i+self.input_dim//self.groups, :], |
233
|
|
|
strides=self._strides, |
234
|
|
|
padding=self._padding, |
235
|
|
|
dilations=dilation, |
236
|
|
|
data_format=self._data_format) for i in range(0, self.input_dim, self.input_dim//self.groups)], axis=-1) |
237
|
|
|
|
238
|
|
|
if self.bias is not None: |
239
|
|
|
outputs = K.bias_add( |
240
|
|
|
outputs, |
241
|
|
|
self.bias, |
242
|
|
|
data_format=self.data_format) |
243
|
|
|
|
244
|
|
|
if self.activation is not None: |
245
|
|
|
return self.activation(outputs) |
246
|
|
|
|
247
|
|
|
return outputs |
248
|
|
|
|
249
|
|
|
def compute_output_shape(self, input_shape): |
250
|
|
|
if self.data_format == 'channels_first': |
251
|
|
|
depth = input_shape[2] |
252
|
|
|
rows = input_shape[3] |
253
|
|
|
cols = input_shape[4] |
254
|
|
|
out_filters = self.groups * self.depth_multiplier |
255
|
|
|
elif self.data_format == 'channels_last': |
256
|
|
|
depth = input_shape[1] |
257
|
|
|
rows = input_shape[2] |
258
|
|
|
cols = input_shape[3] |
259
|
|
|
out_filters = self.groups * self.depth_multiplier |
260
|
|
|
|
261
|
|
|
depth = conv_utils.conv_output_length(depth, self.kernel_size[0], |
|
|
|
|
262
|
|
|
self.padding, |
263
|
|
|
self.strides[0]) |
264
|
|
|
|
265
|
|
|
rows = conv_utils.conv_output_length(rows, self.kernel_size[1], |
|
|
|
|
266
|
|
|
self.padding, |
267
|
|
|
self.strides[1]) |
268
|
|
|
|
269
|
|
|
cols = conv_utils.conv_output_length(cols, self.kernel_size[2], |
|
|
|
|
270
|
|
|
self.padding, |
271
|
|
|
self.strides[2]) |
272
|
|
|
|
273
|
|
|
if self.data_format == 'channels_first': |
274
|
|
|
return (input_shape[0], out_filters, depth, rows, cols) |
|
|
|
|
275
|
|
|
|
276
|
|
|
elif self.data_format == 'channels_last': |
277
|
|
|
return (input_shape[0], depth, rows, cols, out_filters) |
278
|
|
|
|
279
|
|
|
def get_config(self): |
280
|
|
|
config = super(DepthwiseConv3D, self).get_config() |
281
|
|
|
config.pop('filters') |
282
|
|
|
config.pop('kernel_initializer') |
283
|
|
|
config.pop('kernel_regularizer') |
284
|
|
|
config.pop('kernel_constraint') |
285
|
|
|
config['depth_multiplier'] = self.depth_multiplier |
286
|
|
|
config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer) |
287
|
|
|
config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer) |
288
|
|
|
config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint) |
289
|
|
|
return config |
290
|
|
|
|
291
|
|
|
DepthwiseConvolution3D = DepthwiseConv3D |