1
|
|
|
import logging |
|
|
|
|
2
|
|
|
from abc import abstractmethod |
3
|
|
|
from copy import deepcopy |
4
|
|
|
from typing import Dict, Optional |
5
|
|
|
|
6
|
|
|
import tensorflow as tf |
7
|
|
|
|
8
|
|
|
from deepreg.model import layer, layer_util |
9
|
|
|
from deepreg.model.backbone import GlobalNet |
10
|
|
|
from deepreg.registry import REGISTRY |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
def dict_without(d: dict, key) -> dict: |
|
|
|
|
14
|
|
|
""" |
15
|
|
|
Return a copy of the given dict without a certain key. |
16
|
|
|
|
17
|
|
|
:param d: dict to be copied. |
18
|
|
|
:param key: key to be removed. |
19
|
|
|
:return: the copy without a key |
20
|
|
|
""" |
21
|
|
|
copied = deepcopy(d) |
22
|
|
|
copied.pop(key) |
23
|
|
|
return copied |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
class RegistrationModel(tf.keras.Model): |
27
|
|
|
"""Interface for registration model.""" |
28
|
|
|
|
29
|
|
|
def __init__( |
30
|
|
|
self, |
31
|
|
|
moving_image_size: tuple, |
32
|
|
|
fixed_image_size: tuple, |
33
|
|
|
index_size: int, |
34
|
|
|
labeled: bool, |
35
|
|
|
batch_size: int, |
36
|
|
|
config: dict, |
37
|
|
|
num_devices: int = 1, |
38
|
|
|
name: str = "RegistrationModel", |
39
|
|
|
): |
40
|
|
|
""" |
41
|
|
|
Init. |
42
|
|
|
|
43
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
44
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
45
|
|
|
:param index_size: number of indices for identify each sample |
46
|
|
|
:param labeled: if the data is labeled |
47
|
|
|
:param batch_size: size of mini-batch |
48
|
|
|
:param config: config for method, backbone, and loss. |
49
|
|
|
:param num_devices: number of GPU used, |
50
|
|
|
global_batch_size = batch_size*num_devices |
51
|
|
|
:param name: name of the model |
52
|
|
|
""" |
53
|
|
|
super().__init__(name=name) |
54
|
|
|
self.moving_image_size = moving_image_size |
55
|
|
|
self.fixed_image_size = fixed_image_size |
56
|
|
|
self.index_size = index_size |
57
|
|
|
self.labeled = labeled |
58
|
|
|
self.batch_size = batch_size |
59
|
|
|
self.config = config |
60
|
|
|
self.num_devices = num_devices |
61
|
|
|
self.global_batch_size = num_devices * batch_size |
62
|
|
|
|
63
|
|
|
self._inputs = None # save inputs of self._model as dict |
64
|
|
|
self._outputs = None # save outputs of self._model as dict |
65
|
|
|
self._model = self.build_model() |
66
|
|
|
self.build_loss() |
67
|
|
|
|
68
|
|
|
def get_config(self) -> dict: |
69
|
|
|
"""Return the config dictionary for recreating this class.""" |
70
|
|
|
return dict( |
71
|
|
|
moving_image_size=self.moving_image_size, |
72
|
|
|
fixed_image_size=self.fixed_image_size, |
73
|
|
|
index_size=self.index_size, |
74
|
|
|
labeled=self.labeled, |
75
|
|
|
batch_size=self.batch_size, |
76
|
|
|
config=self.config, |
77
|
|
|
num_devices=self.num_devices, |
78
|
|
|
name=self.name, |
79
|
|
|
) |
80
|
|
|
|
81
|
|
|
@abstractmethod |
82
|
|
|
def build_model(self): |
83
|
|
|
"""Build the model to be saved as self._model.""" |
84
|
|
|
|
85
|
|
|
def build_inputs(self) -> Dict[str, tf.keras.layers.Input]: |
86
|
|
|
""" |
87
|
|
|
Build input tensors. |
88
|
|
|
|
89
|
|
|
:return: dict of inputs. |
90
|
|
|
""" |
91
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
92
|
|
|
moving_image = tf.keras.Input( |
93
|
|
|
shape=self.moving_image_size, |
94
|
|
|
batch_size=self.batch_size, |
95
|
|
|
name="moving_image", |
96
|
|
|
) |
97
|
|
|
# (batch, f_dim1, f_dim2, f_dim3, 1) |
98
|
|
|
fixed_image = tf.keras.Input( |
99
|
|
|
shape=self.fixed_image_size, |
100
|
|
|
batch_size=self.batch_size, |
101
|
|
|
name="fixed_image", |
102
|
|
|
) |
103
|
|
|
# (batch, index_size) |
104
|
|
|
indices = tf.keras.Input( |
105
|
|
|
shape=(self.index_size,), |
106
|
|
|
batch_size=self.batch_size, |
107
|
|
|
name="indices", |
108
|
|
|
) |
109
|
|
|
|
110
|
|
|
if not self.labeled: |
111
|
|
|
return dict( |
112
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
113
|
|
|
) |
114
|
|
|
|
115
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
116
|
|
|
moving_label = tf.keras.Input( |
117
|
|
|
shape=self.moving_image_size, |
118
|
|
|
batch_size=self.batch_size, |
119
|
|
|
name="moving_label", |
120
|
|
|
) |
121
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
122
|
|
|
fixed_label = tf.keras.Input( |
123
|
|
|
shape=self.fixed_image_size, |
124
|
|
|
batch_size=self.batch_size, |
125
|
|
|
name="fixed_label", |
126
|
|
|
) |
127
|
|
|
return dict( |
128
|
|
|
moving_image=moving_image, |
129
|
|
|
fixed_image=fixed_image, |
130
|
|
|
moving_label=moving_label, |
131
|
|
|
fixed_label=fixed_label, |
132
|
|
|
indices=indices, |
133
|
|
|
) |
134
|
|
|
|
135
|
|
|
def concat_images( |
136
|
|
|
self, |
137
|
|
|
moving_image: tf.Tensor, |
138
|
|
|
fixed_image: tf.Tensor, |
139
|
|
|
moving_label: Optional[tf.Tensor] = None, |
140
|
|
|
) -> tf.Tensor: |
141
|
|
|
""" |
142
|
|
|
Adjust image shape and concatenate them together. |
143
|
|
|
|
144
|
|
|
:param moving_image: registration source |
145
|
|
|
:param fixed_image: registration target |
146
|
|
|
:param moving_label: optional, only used for conditional model. |
147
|
|
|
:return: |
148
|
|
|
""" |
149
|
|
|
images = [] |
150
|
|
|
|
151
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
152
|
|
|
moving_image = tf.expand_dims(moving_image, axis=4) |
153
|
|
|
moving_image = layer_util.resize3d( |
154
|
|
|
image=moving_image, size=self.fixed_image_size |
155
|
|
|
) |
156
|
|
|
images.append(moving_image) |
157
|
|
|
|
158
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
159
|
|
|
fixed_image = tf.expand_dims(fixed_image, axis=4) |
160
|
|
|
images.append(fixed_image) |
161
|
|
|
|
162
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
163
|
|
|
if moving_label is not None: |
164
|
|
|
moving_label = tf.expand_dims(moving_label, axis=4) |
165
|
|
|
moving_label = layer_util.resize3d( |
166
|
|
|
image=moving_label, size=self.fixed_image_size |
167
|
|
|
) |
168
|
|
|
images.append(moving_label) |
169
|
|
|
|
170
|
|
|
# (batch, f_dim1, f_dim2, f_dim3, 2 or 3) |
171
|
|
|
images = tf.concat(images, axis=4) |
172
|
|
|
return images |
173
|
|
|
|
174
|
|
|
def _build_loss(self, name: str, inputs_dict: dict): |
175
|
|
|
""" |
176
|
|
|
Build and add one weighted loss together with the metrics. |
177
|
|
|
|
178
|
|
|
:param name: name of loss |
179
|
|
|
:param inputs_dict: inputs for loss function |
180
|
|
|
""" |
181
|
|
|
if name not in self.config["loss"]: |
182
|
|
|
# loss config is not defined |
183
|
|
|
logging.warning( |
|
|
|
|
184
|
|
|
f"The configuration for loss {name} is not defined." |
185
|
|
|
f"Loss is not used." |
186
|
|
|
) |
187
|
|
|
return |
188
|
|
|
|
189
|
|
|
loss_config = self.config["loss"][name] |
190
|
|
|
|
191
|
|
|
if "weight" not in loss_config: |
192
|
|
|
# default loss weight 1 |
193
|
|
|
logging.warning( |
|
|
|
|
194
|
|
|
f"The weight for loss {name} is not defined." |
195
|
|
|
f"Default weight = 1.0 is used." |
196
|
|
|
) |
197
|
|
|
loss_config["weight"] = 1.0 |
198
|
|
|
|
199
|
|
|
# build loss |
200
|
|
|
weight = loss_config["weight"] |
201
|
|
|
|
202
|
|
|
if weight == 0: |
203
|
|
|
logging.warning(f"The weight for loss {name} is zero." f"Loss is not used.") |
|
|
|
|
204
|
|
|
return |
205
|
|
|
|
206
|
|
|
loss_cls = REGISTRY.build_loss(config=dict_without(d=loss_config, key="weight")) |
207
|
|
|
loss = loss_cls(**inputs_dict) / self.global_batch_size |
208
|
|
|
weighted_loss = loss * weight |
209
|
|
|
|
210
|
|
|
# add loss |
211
|
|
|
self._model.add_loss(weighted_loss) |
212
|
|
|
|
213
|
|
|
# add metric |
214
|
|
|
self._model.add_metric( |
215
|
|
|
loss, name=f"loss/{name}_{loss_cls.name}", aggregation="mean" |
216
|
|
|
) |
217
|
|
|
self._model.add_metric( |
218
|
|
|
weighted_loss, |
219
|
|
|
name=f"loss/{name}_{loss_cls.name}_weighted", |
220
|
|
|
aggregation="mean", |
221
|
|
|
) |
222
|
|
|
|
223
|
|
|
@abstractmethod |
224
|
|
|
def build_loss(self): |
225
|
|
|
"""Build losses according to configs.""" |
226
|
|
|
|
227
|
|
|
def call( |
|
|
|
|
228
|
|
|
self, inputs: Dict[str, tf.Tensor], training=None, mask=None |
229
|
|
|
) -> Dict[str, tf.Tensor]: |
230
|
|
|
""" |
231
|
|
|
Call the self._model. |
232
|
|
|
|
233
|
|
|
:param inputs: a dict of tensors. |
234
|
|
|
:param training: training or not. |
235
|
|
|
:param mask: maks for inputs. |
236
|
|
|
:return: |
237
|
|
|
""" |
238
|
|
|
return self._model(inputs, training=training, mask=mask) # pragma: no cover |
239
|
|
|
|
240
|
|
|
@abstractmethod |
241
|
|
|
def postprocess( |
242
|
|
|
self, |
243
|
|
|
inputs: Dict[str, tf.Tensor], |
244
|
|
|
outputs: Dict[str, tf.Tensor], |
245
|
|
|
) -> (tf.Tensor, Dict): |
246
|
|
|
""" |
247
|
|
|
Return a dict used for saving inputs and outputs. |
248
|
|
|
|
249
|
|
|
:param inputs: dict of model inputs |
250
|
|
|
:param outputs: dict of model outputs |
251
|
|
|
:return: tuple, indices and a dict. |
252
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
253
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
254
|
|
|
- on_label = True if the tensor depends on label |
255
|
|
|
""" |
256
|
|
|
|
257
|
|
|
|
258
|
|
|
@REGISTRY.register_model(name="ddf") |
259
|
|
|
class DDFModel(RegistrationModel): |
260
|
|
|
""" |
261
|
|
|
A registration model predicts DDF. |
262
|
|
|
|
263
|
|
|
When using global net as backbone, |
264
|
|
|
the model predicts an affine transformation parameters, |
265
|
|
|
and a DDF is calculated based on that. |
266
|
|
|
""" |
267
|
|
|
|
268
|
|
|
def _resize_interpolate(self, field, control_points): |
|
|
|
|
269
|
|
|
resize = layer.ResizeCPTransform(control_points) |
270
|
|
|
field = resize(field) |
271
|
|
|
|
272
|
|
|
interpolate = layer.BSplines3DTransform(control_points, self.fixed_image_size) |
273
|
|
|
field = interpolate(field) |
274
|
|
|
|
275
|
|
|
return field |
276
|
|
|
|
277
|
|
|
def build_model(self): |
278
|
|
|
"""Build the model to be saved as self._model.""" |
279
|
|
|
# build inputs |
280
|
|
|
self._inputs = self.build_inputs() |
281
|
|
|
moving_image = self._inputs["moving_image"] |
282
|
|
|
fixed_image = self._inputs["fixed_image"] |
283
|
|
|
|
284
|
|
|
# build ddf |
285
|
|
|
control_points = self.config["backbone"].pop("control_points", False) |
286
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image) |
287
|
|
|
backbone = REGISTRY.build_backbone( |
288
|
|
|
config=self.config["backbone"], |
289
|
|
|
default_args=dict( |
290
|
|
|
image_size=self.fixed_image_size, |
291
|
|
|
out_channels=3, |
292
|
|
|
out_kernel_initializer="zeros", |
293
|
|
|
out_activation=None, |
294
|
|
|
), |
295
|
|
|
) |
296
|
|
|
|
297
|
|
|
if isinstance(backbone, GlobalNet): |
298
|
|
|
# (f_dim1, f_dim2, f_dim3, 3), (4, 3) |
299
|
|
|
ddf, theta = backbone(inputs=backbone_inputs) |
300
|
|
|
self._outputs = dict(ddf=ddf, theta=theta) |
301
|
|
|
else: |
302
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
303
|
|
|
ddf = backbone(inputs=backbone_inputs) |
304
|
|
|
ddf = ( |
305
|
|
|
self._resize_interpolate(ddf, control_points) if control_points else ddf |
306
|
|
|
) |
307
|
|
|
self._outputs = dict(ddf=ddf) |
308
|
|
|
|
309
|
|
|
# build outputs |
310
|
|
|
warping = layer.Warping(fixed_image_size=self.fixed_image_size) |
311
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
312
|
|
|
pred_fixed_image = warping(inputs=[ddf, moving_image]) |
313
|
|
|
self._outputs["pred_fixed_image"] = pred_fixed_image |
314
|
|
|
|
315
|
|
|
if not self.labeled: |
316
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
317
|
|
|
|
318
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
319
|
|
|
moving_label = self._inputs["moving_label"] |
320
|
|
|
pred_fixed_label = warping(inputs=[ddf, moving_label]) |
321
|
|
|
|
322
|
|
|
self._outputs["pred_fixed_label"] = pred_fixed_label |
323
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
324
|
|
|
|
325
|
|
|
def build_loss(self): |
326
|
|
|
"""Build losses according to configs.""" |
327
|
|
|
fixed_image = self._inputs["fixed_image"] |
328
|
|
|
ddf = self._outputs["ddf"] |
329
|
|
|
pred_fixed_image = self._outputs["pred_fixed_image"] |
330
|
|
|
|
331
|
|
|
# ddf |
332
|
|
|
self._build_loss(name="regularization", inputs_dict=dict(inputs=ddf)) |
333
|
|
|
|
334
|
|
|
# image |
335
|
|
|
self._build_loss( |
336
|
|
|
name="image", inputs_dict=dict(y_true=fixed_image, y_pred=pred_fixed_image) |
337
|
|
|
) |
338
|
|
|
|
339
|
|
|
# label |
340
|
|
|
if self.labeled: |
341
|
|
|
fixed_label = self._inputs["fixed_label"] |
342
|
|
|
pred_fixed_label = self._outputs["pred_fixed_label"] |
343
|
|
|
self._build_loss( |
344
|
|
|
name="label", |
345
|
|
|
inputs_dict=dict(y_true=fixed_label, y_pred=pred_fixed_label), |
346
|
|
|
) |
347
|
|
|
|
348
|
|
|
def postprocess( |
349
|
|
|
self, |
350
|
|
|
inputs: Dict[str, tf.Tensor], |
351
|
|
|
outputs: Dict[str, tf.Tensor], |
352
|
|
|
) -> (tf.Tensor, Dict): |
353
|
|
|
""" |
354
|
|
|
Return a dict used for saving inputs and outputs. |
355
|
|
|
|
356
|
|
|
:param inputs: dict of model inputs |
357
|
|
|
:param outputs: dict of model outputs |
358
|
|
|
:return: tuple, indices and a dict. |
359
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
360
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
361
|
|
|
- on_label = True if the tensor depends on label |
362
|
|
|
""" |
363
|
|
|
indices = inputs["indices"] |
364
|
|
|
processed = dict( |
365
|
|
|
moving_image=(inputs["moving_image"], True, False), |
366
|
|
|
fixed_image=(inputs["fixed_image"], True, False), |
367
|
|
|
ddf=(outputs["ddf"], True, False), |
368
|
|
|
pred_fixed_image=(outputs["pred_fixed_image"], True, False), |
369
|
|
|
) |
370
|
|
|
|
371
|
|
|
# save theta for affine model |
372
|
|
|
if "theta" in outputs: |
373
|
|
|
processed["theta"] = (outputs["theta"], None, None) |
374
|
|
|
|
375
|
|
|
if not self.labeled: |
376
|
|
|
return indices, processed |
377
|
|
|
|
378
|
|
|
processed = { |
379
|
|
|
**dict( |
380
|
|
|
moving_label=(inputs["moving_label"], False, True), |
381
|
|
|
fixed_label=(inputs["fixed_label"], False, True), |
382
|
|
|
pred_fixed_label=(outputs["pred_fixed_label"], False, True), |
383
|
|
|
), |
384
|
|
|
**processed, |
385
|
|
|
} |
386
|
|
|
|
387
|
|
|
return indices, processed |
388
|
|
|
|
389
|
|
|
|
390
|
|
|
@REGISTRY.register_model(name="dvf") |
391
|
|
|
class DVFModel(DDFModel): |
392
|
|
|
""" |
393
|
|
|
A registration model predicts DVF. |
394
|
|
|
|
395
|
|
|
DDF is calculated based on DVF. |
396
|
|
|
""" |
397
|
|
|
|
398
|
|
|
def build_model(self): |
399
|
|
|
"""Build the model to be saved as self._model.""" |
400
|
|
|
# build inputs |
401
|
|
|
self._inputs = self.build_inputs() |
402
|
|
|
moving_image = self._inputs["moving_image"] |
403
|
|
|
fixed_image = self._inputs["fixed_image"] |
404
|
|
|
control_points = self.config["backbone"].pop("control_points", False) |
405
|
|
|
|
406
|
|
|
# build ddf |
407
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image) |
408
|
|
|
backbone = REGISTRY.build_backbone( |
409
|
|
|
config=self.config["backbone"], |
410
|
|
|
default_args=dict( |
411
|
|
|
image_size=self.fixed_image_size, |
412
|
|
|
out_channels=3, |
413
|
|
|
out_kernel_initializer="zeros", |
414
|
|
|
out_activation=None, |
415
|
|
|
), |
416
|
|
|
) |
417
|
|
|
dvf = backbone(inputs=backbone_inputs) |
418
|
|
|
dvf = self._resize_interpolate(dvf, control_points) if control_points else dvf |
419
|
|
|
ddf = layer.IntDVF(fixed_image_size=self.fixed_image_size)(dvf) |
420
|
|
|
|
421
|
|
|
# build outputs |
422
|
|
|
warping = layer.Warping(fixed_image_size=self.fixed_image_size) |
423
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
424
|
|
|
pred_fixed_image = warping(inputs=[ddf, moving_image]) |
425
|
|
|
|
426
|
|
|
self._outputs = dict(dvf=dvf, ddf=ddf, pred_fixed_image=pred_fixed_image) |
427
|
|
|
|
428
|
|
|
if not self.labeled: |
429
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
430
|
|
|
|
431
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
432
|
|
|
moving_label = self._inputs["moving_label"] |
433
|
|
|
pred_fixed_label = warping(inputs=[ddf, moving_label]) |
434
|
|
|
|
435
|
|
|
self._outputs["pred_fixed_label"] = pred_fixed_label |
436
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
437
|
|
|
|
438
|
|
|
def postprocess( |
439
|
|
|
self, |
440
|
|
|
inputs: Dict[str, tf.Tensor], |
441
|
|
|
outputs: Dict[str, tf.Tensor], |
442
|
|
|
) -> (tf.Tensor, Dict): |
443
|
|
|
""" |
444
|
|
|
Return a dict used for saving inputs and outputs. |
445
|
|
|
|
446
|
|
|
:param inputs: dict of model inputs |
447
|
|
|
:param outputs: dict of model outputs |
448
|
|
|
:return: tuple, indices and a dict. |
449
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
450
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
451
|
|
|
- on_label = True if the tensor depends on label |
452
|
|
|
""" |
453
|
|
|
indices, processed = super().postprocess(inputs=inputs, outputs=outputs) |
454
|
|
|
processed["dvf"] = (outputs["dvf"], True, False) |
455
|
|
|
return indices, processed |
456
|
|
|
|
457
|
|
|
|
458
|
|
|
@REGISTRY.register_model(name="conditional") |
459
|
|
|
class ConditionalModel(RegistrationModel): |
460
|
|
|
""" |
461
|
|
|
A registration model predicts fixed image label without DDF or DVF. |
462
|
|
|
""" |
463
|
|
|
|
464
|
|
|
def build_model(self): |
465
|
|
|
"""Build the model to be saved as self._model.""" |
466
|
|
|
assert self.labeled |
467
|
|
|
|
468
|
|
|
# build inputs |
469
|
|
|
self._inputs = self.build_inputs() |
470
|
|
|
moving_image = self._inputs["moving_image"] |
471
|
|
|
fixed_image = self._inputs["fixed_image"] |
472
|
|
|
moving_label = self._inputs["moving_label"] |
473
|
|
|
|
474
|
|
|
# build ddf |
475
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image, moving_label) |
476
|
|
|
backbone = REGISTRY.build_backbone( |
477
|
|
|
config=self.config["backbone"], |
478
|
|
|
default_args=dict( |
479
|
|
|
image_size=self.fixed_image_size, |
480
|
|
|
out_channels=1, |
481
|
|
|
out_kernel_initializer="glorot_uniform", |
482
|
|
|
out_activation="sigmoid", |
483
|
|
|
), |
484
|
|
|
) |
485
|
|
|
# (batch, f_dim1, f_dim2, f_dim3) |
486
|
|
|
pred_fixed_label = backbone(inputs=backbone_inputs) |
487
|
|
|
pred_fixed_label = tf.squeeze(pred_fixed_label, axis=4) |
488
|
|
|
|
489
|
|
|
self._outputs = dict(pred_fixed_label=pred_fixed_label) |
490
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
491
|
|
|
|
492
|
|
|
def build_loss(self): |
493
|
|
|
"""Build losses according to configs.""" |
494
|
|
|
fixed_label = self._inputs["fixed_label"] |
495
|
|
|
pred_fixed_label = self._outputs["pred_fixed_label"] |
496
|
|
|
|
497
|
|
|
self._build_loss( |
498
|
|
|
name="label", |
499
|
|
|
inputs_dict=dict(y_true=fixed_label, y_pred=pred_fixed_label), |
500
|
|
|
) |
501
|
|
|
|
502
|
|
|
def postprocess( |
503
|
|
|
self, |
504
|
|
|
inputs: Dict[str, tf.Tensor], |
505
|
|
|
outputs: Dict[str, tf.Tensor], |
506
|
|
|
) -> (tf.Tensor, Dict): |
507
|
|
|
""" |
508
|
|
|
Return a dict used for saving inputs and outputs. |
509
|
|
|
|
510
|
|
|
:param inputs: dict of model inputs |
511
|
|
|
:param outputs: dict of model outputs |
512
|
|
|
:return: tuple, indices and a dict. |
513
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
514
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
515
|
|
|
- on_label = True if the tensor depends on label |
516
|
|
|
""" |
517
|
|
|
indices = inputs["indices"] |
518
|
|
|
processed = dict( |
519
|
|
|
moving_image=(inputs["moving_image"], True, False), |
520
|
|
|
fixed_image=(inputs["fixed_image"], True, False), |
521
|
|
|
pred_fixed_label=(outputs["pred_fixed_label"], True, True), |
522
|
|
|
moving_label=(inputs["moving_label"], False, True), |
523
|
|
|
fixed_label=(inputs["fixed_label"], False, True), |
524
|
|
|
) |
525
|
|
|
|
526
|
|
|
return indices, processed |
527
|
|
|
|