1
|
|
|
# coding=utf-8 |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
Tests for deepreg/model/loss/label.py in |
5
|
|
|
pytest style |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
from test.unit.util import is_equal_tf |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
import pytest |
12
|
|
|
import tensorflow as tf |
13
|
|
|
|
14
|
|
|
import deepreg.model.loss.label as label |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
@pytest.mark.parametrize("sigma", [1, 3, 2.2]) |
18
|
|
|
def test_gaussian_kernel1d(sigma): |
|
|
|
|
19
|
|
|
tail = int(sigma * 3) |
20
|
|
|
expected = [np.exp(-0.5 * x ** 2 / sigma ** 2) for x in range(-tail, tail + 1)] |
21
|
|
|
expected = expected / np.sum(expected) |
22
|
|
|
got = label.gaussian_kernel1d(sigma) |
23
|
|
|
assert is_equal_tf(got, expected) |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
@pytest.mark.parametrize("sigma", [1, 3, 2.2]) |
27
|
|
|
def test_cauchy_kernel1d(sigma): |
|
|
|
|
28
|
|
|
tail = int(sigma * 5) |
29
|
|
|
expected = [1 / ((x / sigma) ** 2 + 1) for x in range(-tail, tail + 1)] |
30
|
|
|
expected = expected / np.sum(expected) |
31
|
|
|
got = label.cauchy_kernel1d(sigma) |
32
|
|
|
assert is_equal_tf(got, expected) |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
def test_separable_filter(): |
36
|
|
|
""" |
37
|
|
|
Testing separable filter case where non |
38
|
|
|
zero length tensor is passed to the |
39
|
|
|
function. |
40
|
|
|
""" |
41
|
|
|
k = np.ones((3, 3, 3, 3, 1), dtype=np.float32) |
42
|
|
|
array_eye = np.identity(3, dtype=np.float32) |
43
|
|
|
tensor_pred = np.zeros((3, 3, 3, 3, 1), dtype=np.float32) |
44
|
|
|
tensor_pred[:, :, 0, 0, 0] = array_eye |
45
|
|
|
tensor_pred = tf.convert_to_tensor(tensor_pred, dtype=tf.float32) |
46
|
|
|
k = tf.convert_to_tensor(k, dtype=tf.float32) |
47
|
|
|
|
48
|
|
|
expect = np.ones((3, 3, 3, 3, 1), dtype=np.float32) |
49
|
|
|
expect = tf.convert_to_tensor(expect, dtype=tf.float32) |
50
|
|
|
|
51
|
|
|
get = label.separable_filter(tensor_pred, k) |
52
|
|
|
assert is_equal_tf(get, expect) |
53
|
|
|
|