|
1
|
|
|
# coding=utf-8 |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
Tests for deepreg/model/loss/label.py in |
|
5
|
|
|
pytest style |
|
6
|
|
|
""" |
|
7
|
|
|
|
|
8
|
|
|
from test.unit.util import is_equal_tf |
|
9
|
|
|
|
|
10
|
|
|
import numpy as np |
|
11
|
|
|
import pytest |
|
12
|
|
|
import tensorflow as tf |
|
13
|
|
|
|
|
14
|
|
|
import deepreg.loss.label as label |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class TestMultiScaleLoss: |
|
|
|
|
|
|
18
|
|
|
def test_call(self): |
|
|
|
|
|
|
19
|
|
|
loss = label.MultiScaleLoss() |
|
20
|
|
|
with pytest.raises(NotImplementedError): |
|
21
|
|
|
loss.call(0, 0) |
|
22
|
|
|
|
|
23
|
|
|
def test_get_config(self): |
|
|
|
|
|
|
24
|
|
|
loss = label.MultiScaleLoss() |
|
25
|
|
|
got = loss.get_config() |
|
26
|
|
|
expected = dict( |
|
27
|
|
|
scales=None, |
|
28
|
|
|
kernel="gaussian", |
|
29
|
|
|
reduction=tf.keras.losses.Reduction.SUM, |
|
30
|
|
|
name="MultiScaleLoss", |
|
31
|
|
|
) |
|
32
|
|
|
assert got == expected |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
class TestDiceScore: |
|
|
|
|
|
|
36
|
|
|
shape = (3, 3, 3, 3) |
|
37
|
|
|
|
|
38
|
|
|
@pytest.fixture() |
|
39
|
|
|
def y_true(self): |
|
|
|
|
|
|
40
|
|
|
return np.ones(shape=self.shape) * 0.6 |
|
41
|
|
|
|
|
42
|
|
|
@pytest.fixture() |
|
43
|
|
|
def y_pred(self): |
|
|
|
|
|
|
44
|
|
|
return np.ones(shape=self.shape) * 0.3 |
|
45
|
|
|
|
|
46
|
|
View Code Duplication |
@pytest.mark.parametrize( |
|
|
|
|
|
|
47
|
|
|
"binary,neg_weight,scales,expected", |
|
48
|
|
|
[ |
|
49
|
|
|
(True, 0.0, None, 0.0), |
|
50
|
|
|
(False, 0.0, None, 0.4), |
|
51
|
|
|
(False, 0.2, None, 0.4 / 0.94), |
|
52
|
|
|
(False, 0.2, [0, 0], 0.4 / 0.94), |
|
53
|
|
|
(False, 0.2, [0, 1], 0.46030036), |
|
54
|
|
|
], |
|
|
|
|
|
|
55
|
|
|
) |
|
56
|
|
|
def test_call(self, y_true, y_pred, binary, neg_weight, scales, expected): |
|
57
|
|
|
expected = np.array([expected] * self.shape[0]) # call returns (batch, ) |
|
58
|
|
|
got = label.DiceScore(binary=binary, neg_weight=neg_weight, scales=scales).call( |
|
59
|
|
|
y_true=y_true, y_pred=y_pred |
|
60
|
|
|
) |
|
61
|
|
|
assert is_equal_tf(got, expected) |
|
62
|
|
|
got = label.DiceLoss(binary=binary, neg_weight=neg_weight, scales=scales).call( |
|
63
|
|
|
y_true=y_true, y_pred=y_pred |
|
64
|
|
|
) |
|
65
|
|
|
assert is_equal_tf(got, -expected) |
|
66
|
|
|
|
|
67
|
|
|
def test_get_config(self): |
|
|
|
|
|
|
68
|
|
|
got = label.DiceScore().get_config() |
|
69
|
|
|
expected = dict( |
|
70
|
|
|
binary=False, |
|
71
|
|
|
neg_weight=0.0, |
|
72
|
|
|
scales=None, |
|
73
|
|
|
kernel="gaussian", |
|
74
|
|
|
reduction=tf.keras.losses.Reduction.SUM, |
|
75
|
|
|
name="DiceScore", |
|
76
|
|
|
) |
|
77
|
|
|
assert got == expected |
|
78
|
|
|
|
|
79
|
|
|
|
|
80
|
|
|
class TestCrossEntropy: |
|
|
|
|
|
|
81
|
|
|
shape = (3, 3, 3, 3) |
|
82
|
|
|
|
|
83
|
|
|
@pytest.fixture() |
|
84
|
|
|
def y_true(self): |
|
|
|
|
|
|
85
|
|
|
return np.ones(shape=self.shape) * 0.6 |
|
86
|
|
|
|
|
87
|
|
|
@pytest.fixture() |
|
88
|
|
|
def y_pred(self): |
|
|
|
|
|
|
89
|
|
|
return np.ones(shape=self.shape) * 0.3 |
|
90
|
|
|
|
|
91
|
|
|
@pytest.mark.parametrize( |
|
92
|
|
|
"binary,neg_weight,scales,expected", |
|
93
|
|
|
[ |
|
94
|
|
|
(True, 0.0, None, -np.log(1.0e-7)), |
|
95
|
|
|
(False, 0.0, None, -0.6 * np.log(0.3)), |
|
96
|
|
|
(False, 0.2, None, -0.48 * np.log(0.3) - 0.08 * np.log(0.7)), |
|
97
|
|
|
(False, 0.2, [0, 0], -0.48 * np.log(0.3) - 0.08 * np.log(0.7)), |
|
98
|
|
|
(False, 0.2, [0, 1], 0.5239637), |
|
99
|
|
|
], |
|
|
|
|
|
|
100
|
|
|
) |
|
101
|
|
|
def test_call(self, y_true, y_pred, binary, neg_weight, scales, expected): |
|
102
|
|
|
expected = np.array([expected] * self.shape[0]) # call returns (batch, ) |
|
103
|
|
|
got = label.CrossEntropy( |
|
104
|
|
|
binary=binary, neg_weight=neg_weight, scales=scales |
|
105
|
|
|
).call(y_true=y_true, y_pred=y_pred) |
|
106
|
|
|
assert is_equal_tf(got, expected) |
|
107
|
|
|
|
|
108
|
|
|
def test_get_config(self): |
|
|
|
|
|
|
109
|
|
|
got = label.CrossEntropy().get_config() |
|
110
|
|
|
expected = dict( |
|
111
|
|
|
binary=False, |
|
112
|
|
|
neg_weight=0.0, |
|
113
|
|
|
scales=None, |
|
114
|
|
|
kernel="gaussian", |
|
115
|
|
|
reduction=tf.keras.losses.Reduction.SUM, |
|
116
|
|
|
name="CrossEntropy", |
|
117
|
|
|
) |
|
118
|
|
|
assert got == expected |
|
119
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
class TestJaccardIndex: |
|
|
|
|
|
|
122
|
|
|
shape = (3, 3, 3, 3) |
|
123
|
|
|
|
|
124
|
|
|
@pytest.fixture() |
|
125
|
|
|
def y_true(self): |
|
|
|
|
|
|
126
|
|
|
return np.ones(shape=self.shape) * 0.6 |
|
127
|
|
|
|
|
128
|
|
|
@pytest.fixture() |
|
129
|
|
|
def y_pred(self): |
|
|
|
|
|
|
130
|
|
|
return np.ones(shape=self.shape) * 0.3 |
|
131
|
|
|
|
|
132
|
|
View Code Duplication |
@pytest.mark.parametrize( |
|
|
|
|
|
|
133
|
|
|
"binary,scales,expected", |
|
134
|
|
|
[ |
|
135
|
|
|
(True, None, 0), |
|
136
|
|
|
(False, None, 0.25), |
|
137
|
|
|
(False, [0, 0], 0.25), |
|
138
|
|
|
(False, [0, 1], 0.17484076), |
|
139
|
|
|
], |
|
|
|
|
|
|
140
|
|
|
) |
|
141
|
|
|
def test_call(self, y_true, y_pred, binary, scales, expected): |
|
142
|
|
|
expected = np.array([expected] * self.shape[0]) # call returns (batch, ) |
|
143
|
|
|
got = label.JaccardIndex(binary=binary, scales=scales).call( |
|
144
|
|
|
y_true=y_true, y_pred=y_pred |
|
145
|
|
|
) |
|
146
|
|
|
assert is_equal_tf(got, expected) |
|
147
|
|
|
got = label.JaccardLoss(binary=binary, scales=scales).call( |
|
148
|
|
|
y_true=y_true, y_pred=y_pred |
|
149
|
|
|
) |
|
150
|
|
|
assert is_equal_tf(got, -expected) |
|
151
|
|
|
|
|
152
|
|
|
def test_get_config(self): |
|
|
|
|
|
|
153
|
|
|
got = label.JaccardIndex().get_config() |
|
154
|
|
|
expected = dict( |
|
155
|
|
|
binary=False, |
|
156
|
|
|
scales=None, |
|
157
|
|
|
kernel="gaussian", |
|
158
|
|
|
reduction=tf.keras.losses.Reduction.SUM, |
|
159
|
|
|
name="JaccardIndex", |
|
160
|
|
|
) |
|
161
|
|
|
assert got == expected |
|
162
|
|
|
|
|
163
|
|
|
|
|
164
|
|
|
def test_foreground_prop_binary(): |
|
165
|
|
|
""" |
|
166
|
|
|
Test foreground function with a |
|
167
|
|
|
tensor of zeros with some ones, asserting |
|
168
|
|
|
equal to known precomputed tensor. |
|
169
|
|
|
Testing with binary case. |
|
170
|
|
|
""" |
|
171
|
|
|
array_eye = np.identity(3, dtype=np.float32) |
|
172
|
|
|
tensor_eye = np.zeros((3, 3, 3, 3), dtype=np.float32) |
|
173
|
|
|
tensor_eye[:, :, 0:3, 0:3] = array_eye |
|
174
|
|
|
expect = tf.convert_to_tensor([1.0 / 3, 1.0 / 3, 1.0 / 3], dtype=tf.float32) |
|
175
|
|
|
get = label.foreground_proportion(tensor_eye) |
|
176
|
|
|
assert is_equal_tf(get, expect) |
|
177
|
|
|
|
|
178
|
|
|
|
|
179
|
|
|
def test_foreground_prop_simple(): |
|
180
|
|
|
""" |
|
181
|
|
|
Test foreground functions with a tensor |
|
182
|
|
|
of zeros with some ones and some values below |
|
183
|
|
|
one to assert the thresholding works. |
|
184
|
|
|
""" |
|
185
|
|
|
array_eye = np.identity(3, dtype=np.float32) |
|
186
|
|
|
tensor_eye = np.zeros((3, 3, 3, 3), dtype=np.float32) |
|
187
|
|
|
tensor_eye[:, 0, :, :] = 0.4 * array_eye # 0 |
|
188
|
|
|
tensor_eye[:, 1, :, :] = array_eye |
|
189
|
|
|
tensor_eye[:, 2, :, :] = array_eye |
|
190
|
|
|
tensor_eye = tf.convert_to_tensor(tensor_eye, dtype=tf.float32) |
|
191
|
|
|
expect = [54 / (27 * 9), 54 / (27 * 9), 54 / (27 * 9)] |
|
192
|
|
|
get = label.foreground_proportion(tensor_eye) |
|
193
|
|
|
assert is_equal_tf(get, expect) |
|
194
|
|
|
|
|
195
|
|
|
|
|
196
|
|
|
def test_compute_centroid(): |
|
197
|
|
|
""" |
|
198
|
|
|
Testing compute centroid function |
|
199
|
|
|
and comparing to expected values. |
|
200
|
|
|
""" |
|
201
|
|
|
tensor_mask = np.zeros((3, 2, 2, 2)) |
|
202
|
|
|
tensor_mask[0, :, :, :] = np.ones((2, 2, 2)) |
|
203
|
|
|
tensor_mask = tf.constant(tensor_mask, dtype=tf.float32) |
|
204
|
|
|
|
|
205
|
|
|
tensor_grid = np.ones((2, 2, 2, 3)) |
|
206
|
|
|
tensor_grid[:, :, :, 1] *= 2 |
|
207
|
|
|
tensor_grid[:, :, :, 2] *= 3 |
|
208
|
|
|
tensor_grid = tf.constant(tensor_grid, dtype=tf.float32) |
|
209
|
|
|
|
|
210
|
|
|
expected = np.ones((3, 3)) # use 1 because 0/0 ~= (0+eps)/(0+eps) = 1 |
|
211
|
|
|
expected[0, :] = [1, 2, 3] |
|
212
|
|
|
got = label.compute_centroid(tensor_mask, tensor_grid) |
|
213
|
|
|
assert is_equal_tf(got, expected) |
|
214
|
|
|
|
|
215
|
|
|
|
|
216
|
|
|
def test_compute_centroid_d(): |
|
217
|
|
|
""" |
|
218
|
|
|
Testing compute centroid distance between equal |
|
219
|
|
|
tensors returns 0s. |
|
220
|
|
|
""" |
|
221
|
|
|
array_ones = np.ones((2, 2)) |
|
222
|
|
|
tensor_mask = np.zeros((3, 2, 2, 2)) |
|
223
|
|
|
tensor_mask[0, :, :, :] = array_ones |
|
224
|
|
|
tensor_mask = tf.convert_to_tensor(tensor_mask, dtype=tf.float32) |
|
225
|
|
|
|
|
226
|
|
|
tensor_grid = np.zeros((2, 2, 2, 3)) |
|
227
|
|
|
tensor_grid[:, :, :, 0] = array_ones |
|
228
|
|
|
tensor_grid = tf.convert_to_tensor(tensor_grid, dtype=tf.float32) |
|
229
|
|
|
|
|
230
|
|
|
get = label.compute_centroid_distance(tensor_mask, tensor_mask, tensor_grid) |
|
231
|
|
|
expect = np.zeros((3)) |
|
232
|
|
|
assert is_equal_tf(get, expect) |
|
233
|
|
|
|