1
|
|
|
# coding=utf-8 |
|
|
|
|
2
|
|
|
|
3
|
|
|
from typing import List, Tuple, Union |
4
|
|
|
|
5
|
|
|
import tensorflow as tf |
6
|
|
|
import tensorflow.keras.layers as tfkl |
7
|
|
|
|
8
|
|
|
from deepreg.model import layer, layer_util |
9
|
|
|
from deepreg.model.backbone.interface import Backbone |
10
|
|
|
from deepreg.registry import REGISTRY |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
class AdditiveUpsampling(tfkl.Layer): |
|
|
|
|
14
|
|
|
def __init__( |
15
|
|
|
self, |
16
|
|
|
filters: int, |
17
|
|
|
output_padding: int, |
18
|
|
|
kernel_size: int, |
19
|
|
|
padding: str, |
20
|
|
|
strides: int, |
21
|
|
|
output_shape: tuple, |
22
|
|
|
name: str = "AdditiveUpsampling", |
23
|
|
|
): |
24
|
|
|
""" |
25
|
|
|
Addictive up-sampling layer. |
26
|
|
|
|
27
|
|
|
:param filters: number of channels for output |
28
|
|
|
:param output_padding: padding for output |
29
|
|
|
:param kernel_size: arg for deconv3d |
30
|
|
|
:param padding: arg for deconv3d |
31
|
|
|
:param strides: arg for deconv3d |
32
|
|
|
:param output_shape: shape of the output tensor |
33
|
|
|
:param name: name of the layer. |
34
|
|
|
""" |
35
|
|
|
super().__init__(name=name) |
36
|
|
|
self.deconv3d = layer.Deconv3dBlock( |
37
|
|
|
filters=filters, |
38
|
|
|
output_padding=output_padding, |
39
|
|
|
kernel_size=kernel_size, |
40
|
|
|
strides=strides, |
41
|
|
|
padding=padding, |
42
|
|
|
) |
43
|
|
|
self.resize = layer.Resize3d(shape=output_shape) |
44
|
|
|
|
45
|
|
|
def call(self, inputs, **kwargs): |
46
|
|
|
deconved = self.deconv3d(inputs) |
47
|
|
|
resized = self.resize(inputs) |
48
|
|
|
resized = tf.add_n(tf.split(resized, num_or_size_splits=2, axis=4)) |
|
|
|
|
49
|
|
|
return deconved + resized |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
class Extraction(tfkl.Layer): |
|
|
|
|
53
|
|
|
def __init__( |
54
|
|
|
self, |
55
|
|
|
image_size: Tuple[int], |
56
|
|
|
extract_levels: List[int], |
57
|
|
|
out_channels: int, |
58
|
|
|
out_kernel_initializer: str, |
59
|
|
|
out_activation: str, |
60
|
|
|
name: str = "Extraction", |
61
|
|
|
): |
62
|
|
|
""" |
63
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
64
|
|
|
:param extract_levels: number of extraction levels. |
65
|
|
|
:param out_channels: number of channels for the extractions |
66
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
67
|
|
|
:param out_activation: activation to use at end layer. |
68
|
|
|
:param name: name of the layer |
69
|
|
|
""" |
70
|
|
|
super().__init__(name=name) |
71
|
|
|
self.extract_levels = extract_levels |
72
|
|
|
self.max_level = max(extract_levels) |
73
|
|
|
self.layers = [ |
74
|
|
|
tf.keras.Sequential( |
75
|
|
|
[ |
76
|
|
|
tfkl.Conv3D( |
77
|
|
|
filters=out_channels, |
78
|
|
|
kernel_size=3, |
79
|
|
|
strides=1, |
80
|
|
|
padding="same", |
81
|
|
|
kernel_initializer=out_kernel_initializer, |
82
|
|
|
activation=out_activation, |
83
|
|
|
), |
84
|
|
|
layer.Resize3d(shape=image_size), |
85
|
|
|
] |
86
|
|
|
) |
87
|
|
|
for _ in extract_levels |
88
|
|
|
] |
89
|
|
|
|
90
|
|
|
def call(self, inputs: List[tf.Tensor], **kwargs) -> tf.Tensor: |
91
|
|
|
""" |
92
|
|
|
|
93
|
|
|
:param inputs: a list of tensors |
94
|
|
|
:param kwargs: |
95
|
|
|
:return: |
96
|
|
|
""" |
97
|
|
|
|
98
|
|
|
return tf.add_n( |
99
|
|
|
[ |
100
|
|
|
self.layers[idx](inputs=inputs[self.max_level - level]) |
101
|
|
|
for idx, level in enumerate(self.extract_levels) |
102
|
|
|
] |
103
|
|
|
) / len(self.extract_levels) |
104
|
|
|
|
105
|
|
|
|
106
|
|
|
@REGISTRY.register_backbone(name="local") |
107
|
|
|
class LocalNet(Backbone): |
108
|
|
|
""" |
109
|
|
|
Build LocalNet for image registration. |
110
|
|
|
|
111
|
|
|
Reference: |
112
|
|
|
|
113
|
|
|
- Hu, Yipeng, et al. |
114
|
|
|
"Weakly-supervised convolutional neural networks |
115
|
|
|
for multimodal image registration." |
116
|
|
|
Medical image analysis 49 (2018): 1-13. |
117
|
|
|
https://doi.org/10.1016/j.media.2018.07.002 |
118
|
|
|
|
119
|
|
|
- Hu, Yipeng, et al. |
120
|
|
|
"Label-driven weakly-supervised learning |
121
|
|
|
for multimodal deformable image registration," |
122
|
|
|
https://arxiv.org/abs/1711.01666 |
123
|
|
|
""" |
124
|
|
|
|
125
|
|
|
def __init__( |
126
|
|
|
self, |
127
|
|
|
image_size: tuple, |
128
|
|
|
out_channels: int, |
129
|
|
|
num_channel_initial: int, |
130
|
|
|
extract_levels: List[int], |
131
|
|
|
out_kernel_initializer: str, |
132
|
|
|
out_activation: str, |
133
|
|
|
use_additive_upsampling: bool = True, |
134
|
|
|
name: str = "LocalNet", |
135
|
|
|
**kwargs, |
136
|
|
|
): |
137
|
|
|
""" |
138
|
|
|
Image is encoded gradually, i from level 0 to E, |
139
|
|
|
then it is decoded gradually, j from level E to D. |
140
|
|
|
Some of the decoded levels are used for generating extractions. |
141
|
|
|
|
142
|
|
|
So, extract_levels are between [0, E] with E = max(extract_levels), |
143
|
|
|
and D = min(extract_levels). |
144
|
|
|
|
145
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
146
|
|
|
:param out_channels: number of channels for the extractions |
147
|
|
|
:param num_channel_initial: number of initial channels. |
148
|
|
|
:param extract_levels: number of extraction levels. |
149
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
150
|
|
|
:param out_activation: activation to use at end layer. |
151
|
|
|
:param use_additive_upsampling: whether use additive up-sampling. |
152
|
|
|
:param name: name of the backbone. |
153
|
|
|
:param kwargs: additional arguments. |
154
|
|
|
""" |
155
|
|
|
super().__init__( |
156
|
|
|
image_size=image_size, |
157
|
|
|
out_channels=out_channels, |
158
|
|
|
num_channel_initial=num_channel_initial, |
159
|
|
|
out_kernel_initializer=out_kernel_initializer, |
160
|
|
|
out_activation=out_activation, |
161
|
|
|
name=name, |
162
|
|
|
**kwargs, |
163
|
|
|
) |
164
|
|
|
|
165
|
|
|
# save parameters |
166
|
|
|
self._extract_levels = extract_levels |
167
|
|
|
self._use_additive_upsampling = use_additive_upsampling |
168
|
|
|
self._extract_max_level = max(self._extract_levels) # E |
169
|
|
|
self._extract_min_level = min(self._extract_levels) # D |
170
|
|
|
|
171
|
|
|
# init layer variables |
172
|
|
|
num_channels = [ |
173
|
|
|
num_channel_initial * (2 ** level) |
174
|
|
|
for level in range(self._extract_max_level + 1) |
175
|
|
|
] # level 0 to E |
176
|
|
|
kernel_sizes = [ |
177
|
|
|
7 if level == 0 else 3 for level in range(self._extract_max_level + 1) |
178
|
|
|
] |
179
|
|
|
self._downsample_convs = [] |
180
|
|
|
self._downsample_pools = [] |
181
|
|
|
tensor_shape = image_size |
182
|
|
|
self._tensor_shapes = [tensor_shape] |
183
|
|
|
for i in range(self._extract_max_level): |
184
|
|
|
downsample_conv = self.build_conv_block( |
185
|
|
|
filters=num_channels[i], kernel_size=kernel_sizes[i], padding="same" |
186
|
|
|
) |
187
|
|
|
downsample_pool = self.build_down_sampling_block( |
188
|
|
|
kernel_size=2, strides=2, padding="same" |
189
|
|
|
) |
190
|
|
|
tensor_shape = tuple((x + 1) // 2 for x in tensor_shape) |
191
|
|
|
self._downsample_convs.append(downsample_conv) |
192
|
|
|
self._downsample_pools.append(downsample_pool) |
193
|
|
|
self._tensor_shapes.append(tensor_shape) |
194
|
|
|
|
195
|
|
|
self._bottom_block = self.build_bottom_block( |
196
|
|
|
filters=num_channels[-1], kernel_size=3, padding="same" |
197
|
|
|
) # level E |
198
|
|
|
|
199
|
|
|
self._upsample_deconvs = [] |
200
|
|
|
self._upsample_convs = [] |
201
|
|
|
for level in range( |
202
|
|
|
self._extract_max_level - 1, self._extract_min_level - 1, -1 |
203
|
|
|
): # level D to E-1 |
204
|
|
|
padding = layer_util.deconv_output_padding( |
205
|
|
|
input_shape=self._tensor_shapes[level + 1], |
206
|
|
|
output_shape=self._tensor_shapes[level], |
207
|
|
|
kernel_size=kernel_sizes[level], |
208
|
|
|
stride=2, |
209
|
|
|
padding="same", |
210
|
|
|
) |
211
|
|
|
upsample_deconv = self.build_up_sampling_block( |
212
|
|
|
filters=num_channels[level], |
213
|
|
|
output_padding=padding, |
214
|
|
|
kernel_size=3, |
215
|
|
|
strides=2, |
216
|
|
|
padding="same", |
217
|
|
|
output_shape=self._tensor_shapes[level], |
218
|
|
|
) |
219
|
|
|
upsample_conv = self.build_conv_block( |
220
|
|
|
filters=num_channels[level], kernel_size=3, padding="same" |
221
|
|
|
) |
222
|
|
|
self._upsample_deconvs.append(upsample_deconv) |
223
|
|
|
self._upsample_convs.append(upsample_conv) |
224
|
|
|
self._output = self.build_output_block( |
225
|
|
|
image_size=image_size, |
226
|
|
|
extract_levels=extract_levels, |
227
|
|
|
out_channels=out_channels, |
228
|
|
|
out_kernel_initializer=out_kernel_initializer, |
229
|
|
|
out_activation=out_activation, |
230
|
|
|
) |
231
|
|
|
|
232
|
|
|
def build_conv_block( |
233
|
|
|
self, filters: int, kernel_size: int, padding: str |
234
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
235
|
|
|
""" |
236
|
|
|
Build a conv block for down-sampling or up-sampling. |
237
|
|
|
|
238
|
|
|
This block do not change the tensor shape (width, height, depth), |
239
|
|
|
it only changes the number of channels. |
240
|
|
|
|
241
|
|
|
:param filters: number of channels for output |
242
|
|
|
:param kernel_size: arg for conv3d |
243
|
|
|
:param padding: arg for conv3d |
244
|
|
|
:return: a block consists of one or multiple layers |
245
|
|
|
""" |
246
|
|
|
return tf.keras.Sequential( |
247
|
|
|
[ |
248
|
|
|
layer.Conv3dBlock( |
249
|
|
|
filters=filters, |
250
|
|
|
kernel_size=kernel_size, |
251
|
|
|
padding=padding, |
252
|
|
|
), |
253
|
|
|
layer.ResidualConv3dBlock( |
254
|
|
|
filters=filters, |
255
|
|
|
kernel_size=kernel_size, |
256
|
|
|
padding=padding, |
257
|
|
|
), |
258
|
|
|
] |
259
|
|
|
) |
260
|
|
|
|
261
|
|
|
def build_down_sampling_block( |
262
|
|
|
self, kernel_size: int, padding: str, strides: int |
263
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
264
|
|
|
""" |
265
|
|
|
Build a block for down-sampling. |
266
|
|
|
|
267
|
|
|
This block changes the tensor shape (width, height, depth), |
268
|
|
|
but it does not changes the number of channels. |
269
|
|
|
|
270
|
|
|
:param kernel_size: arg for pool3d |
271
|
|
|
:param padding: arg for pool3d |
272
|
|
|
:param strides: arg for pool3d |
273
|
|
|
:return: a block consists of one or multiple layers |
274
|
|
|
""" |
275
|
|
|
return tfkl.MaxPool3D(pool_size=kernel_size, strides=strides, padding=padding) |
276
|
|
|
|
277
|
|
|
def build_bottom_block( |
278
|
|
|
self, filters: int, kernel_size: int, padding: str |
279
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
280
|
|
|
""" |
281
|
|
|
Build a block for bottom layer. |
282
|
|
|
|
283
|
|
|
This block do not change the tensor shape (width, height, depth), |
284
|
|
|
it only changes the number of channels. |
285
|
|
|
|
286
|
|
|
:param filters: number of channels for output |
287
|
|
|
:param kernel_size: arg for conv3d |
288
|
|
|
:param padding: arg for conv3d |
289
|
|
|
:return: a block consists of one or multiple layers |
290
|
|
|
""" |
291
|
|
|
return layer.Conv3dBlock( |
292
|
|
|
filters=filters, kernel_size=kernel_size, padding=padding |
293
|
|
|
) |
294
|
|
|
|
295
|
|
|
def build_up_sampling_block( |
296
|
|
|
self, |
297
|
|
|
filters: int, |
298
|
|
|
output_padding: int, |
299
|
|
|
kernel_size: int, |
300
|
|
|
padding: str, |
301
|
|
|
strides: int, |
302
|
|
|
output_shape: tuple, |
303
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
304
|
|
|
""" |
305
|
|
|
Build a block for up-sampling. |
306
|
|
|
|
307
|
|
|
This block changes the tensor shape (width, height, depth), |
308
|
|
|
but it does not changes the number of channels. |
309
|
|
|
|
310
|
|
|
:param filters: number of channels for output |
311
|
|
|
:param output_padding: padding for output |
312
|
|
|
:param kernel_size: arg for deconv3d |
313
|
|
|
:param padding: arg for deconv3d |
314
|
|
|
:param strides: arg for deconv3d |
315
|
|
|
:param output_shape: shape of the output tensor |
316
|
|
|
:return: a block consists of one or multiple layers |
317
|
|
|
""" |
318
|
|
|
|
319
|
|
|
if self._use_additive_upsampling: |
320
|
|
|
return AdditiveUpsampling( |
321
|
|
|
filters=filters, |
322
|
|
|
output_padding=output_padding, |
323
|
|
|
kernel_size=kernel_size, |
324
|
|
|
strides=strides, |
325
|
|
|
padding=padding, |
326
|
|
|
output_shape=output_shape, |
327
|
|
|
) |
328
|
|
|
|
329
|
|
|
return layer.Deconv3dBlock( |
330
|
|
|
filters=filters, |
331
|
|
|
output_padding=output_padding, |
332
|
|
|
kernel_size=kernel_size, |
333
|
|
|
strides=strides, |
334
|
|
|
padding=padding, |
335
|
|
|
) |
336
|
|
|
|
337
|
|
|
def build_skip_block(self) -> Union[tf.keras.Model, tfkl.Layer]: |
338
|
|
|
""" |
339
|
|
|
Build a block for combining skipped tensor and up-sampled one. |
340
|
|
|
|
341
|
|
|
This block do not change the tensor shape (width, height, depth), |
342
|
|
|
it only changes the number of channels. |
343
|
|
|
|
344
|
|
|
The input to this block is a list of tensors. |
345
|
|
|
|
346
|
|
|
:return: a block consists of one or multiple layers |
347
|
|
|
""" |
348
|
|
|
return tfkl.Add() |
349
|
|
|
|
350
|
|
|
def build_output_block( |
351
|
|
|
self, |
352
|
|
|
image_size: Tuple[int], |
353
|
|
|
extract_levels: List[int], |
354
|
|
|
out_channels: int, |
355
|
|
|
out_kernel_initializer: str, |
356
|
|
|
out_activation: str, |
357
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
358
|
|
|
""" |
359
|
|
|
Build a block for output. |
360
|
|
|
|
361
|
|
|
The input to this block is a list of tensors. |
362
|
|
|
|
363
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
364
|
|
|
:param extract_levels: number of extraction levels. |
365
|
|
|
:param out_channels: number of channels for the extractions |
366
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
367
|
|
|
:param out_activation: activation to use at end layer. |
368
|
|
|
:return: a block consists of one or multiple layers |
369
|
|
|
""" |
370
|
|
|
return Extraction( |
371
|
|
|
image_size=image_size, |
372
|
|
|
extract_levels=extract_levels, |
373
|
|
|
out_channels=out_channels, |
374
|
|
|
out_kernel_initializer=out_kernel_initializer, |
375
|
|
|
out_activation=out_activation, |
376
|
|
|
) |
377
|
|
|
|
378
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
379
|
|
|
""" |
380
|
|
|
Build LocalNet graph based on built layers. |
381
|
|
|
|
382
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
383
|
|
|
:param training: None or bool. |
384
|
|
|
:param mask: None or tf.Tensor. |
385
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
386
|
|
|
""" |
387
|
|
|
|
388
|
|
|
# down sample from level 0 to E |
389
|
|
|
# outputs used for decoding, encoded[i] corresponds -> level i |
390
|
|
|
# stored only 0 to E-1 |
391
|
|
|
skips = [] |
392
|
|
|
down_sampled = inputs |
393
|
|
|
for level in range(self._extract_max_level): # level 0 to E - 1 |
394
|
|
|
skip = self._downsample_convs[level](inputs=down_sampled, training=training) |
395
|
|
|
down_sampled = self._downsample_pools[level](inputs=skip, training=training) |
396
|
|
|
skips.append(skip) |
397
|
|
|
up_sampled = self._bottom_block( |
398
|
|
|
inputs=down_sampled, training=training |
399
|
|
|
) # level E of encoding/decoding |
400
|
|
|
|
401
|
|
|
# up sample from level E to D |
402
|
|
|
outs = [up_sampled] # level E |
403
|
|
|
for idx, level in enumerate( |
404
|
|
|
range(self._extract_max_level - 1, self._extract_min_level - 1, -1) |
405
|
|
|
): # level E-1 to D |
406
|
|
|
up_sampled = self._upsample_deconvs[idx]( |
407
|
|
|
inputs=up_sampled, training=training |
408
|
|
|
) |
409
|
|
|
up_sampled = self.build_skip_block()([up_sampled, skips[level]]) |
410
|
|
|
up_sampled = self._upsample_convs[idx](inputs=up_sampled, training=training) |
411
|
|
|
outs.append(up_sampled) |
412
|
|
|
|
413
|
|
|
# output |
414
|
|
|
output = self._output(outs) |
415
|
|
|
|
416
|
|
|
return output |
417
|
|
|
|