1
|
|
|
# coding=utf-8 |
|
|
|
|
2
|
|
|
|
3
|
|
|
|
4
|
|
|
import tensorflow as tf |
5
|
|
|
import tensorflow.keras.layers as tfkl |
6
|
|
|
|
7
|
|
|
from deepreg.model import layer |
8
|
|
|
from deepreg.model.backbone.interface import Backbone |
9
|
|
|
from deepreg.registry import REGISTRY |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
@REGISTRY.register_backbone(name="unet") |
13
|
|
|
class UNet(Backbone): |
14
|
|
|
""" |
15
|
|
|
Class that implements an adapted 3D UNet. |
16
|
|
|
|
17
|
|
|
Reference: |
18
|
|
|
|
19
|
|
|
- O. Ronneberger, P. Fischer, and T. Brox, |
20
|
|
|
“U-net: Convolutional networks for biomedical image segmentation,”, |
21
|
|
|
Lecture Notes in Computer Science, 2015, vol. 9351, pp. 234–241. |
22
|
|
|
https://arxiv.org/abs/1505.04597 |
23
|
|
|
""" |
24
|
|
|
|
25
|
|
|
def __init__( |
26
|
|
|
self, |
27
|
|
|
image_size: tuple, |
28
|
|
|
out_channels: int, |
29
|
|
|
num_channel_initial: int, |
30
|
|
|
depth: int, |
31
|
|
|
out_kernel_initializer: str, |
32
|
|
|
out_activation: str, |
33
|
|
|
pooling: bool = True, |
34
|
|
|
concat_skip: bool = False, |
35
|
|
|
control_points: (tuple, None) = None, |
36
|
|
|
name: str = "Unet", |
37
|
|
|
**kwargs, |
38
|
|
|
): |
39
|
|
|
""" |
40
|
|
|
Initialise UNet. |
41
|
|
|
|
42
|
|
|
:param image_size: (dim1, dim2, dim3), dims of input image. |
43
|
|
|
:param out_channels: number of channels for the output |
44
|
|
|
:param num_channel_initial: number of initial channels |
45
|
|
|
:param depth: input is at level 0, bottom is at level depth |
46
|
|
|
:param out_kernel_initializer: kernel initializer for the last layer |
47
|
|
|
:param out_activation: activation at the last layer |
48
|
|
|
:param pooling: for downsampling, use non-parameterized |
49
|
|
|
pooling if true, otherwise use conv3d |
50
|
|
|
:param concat_skip: when upsampling, concatenate skipped |
51
|
|
|
tensor if true, otherwise use addition |
52
|
|
|
:param control_points: specify the distance between control points (in voxels). |
53
|
|
|
:param name: name of the backbone. |
54
|
|
|
:param kwargs: additional arguments. |
55
|
|
|
""" |
56
|
|
|
super().__init__( |
57
|
|
|
image_size=image_size, |
58
|
|
|
out_channels=out_channels, |
59
|
|
|
num_channel_initial=num_channel_initial, |
60
|
|
|
out_kernel_initializer=out_kernel_initializer, |
61
|
|
|
out_activation=out_activation, |
62
|
|
|
name=name, |
63
|
|
|
**kwargs, |
64
|
|
|
) |
65
|
|
|
|
66
|
|
|
# init layer variables |
67
|
|
|
num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)] |
68
|
|
|
|
69
|
|
|
self._num_channel_initial = num_channel_initial |
70
|
|
|
self._depth = depth |
71
|
|
|
self._concat_skip = concat_skip |
72
|
|
|
self._downsample_convs = [] |
73
|
|
|
self._downsample_pools = [] |
74
|
|
|
tensor_shape = image_size |
75
|
|
|
self._tensor_shapes = [tensor_shape] |
76
|
|
|
for d in range(depth): |
77
|
|
|
downsample_conv = tf.keras.Sequential( |
78
|
|
|
[ |
79
|
|
|
layer.Conv3dBlock( |
80
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
81
|
|
|
), |
82
|
|
|
layer.ResidualConv3dBlock( |
83
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
84
|
|
|
), |
85
|
|
|
] |
86
|
|
|
) |
87
|
|
|
if pooling: |
88
|
|
|
downsample_pool = tfkl.MaxPool3D(pool_size=2, strides=2, padding="same") |
89
|
|
|
else: |
90
|
|
|
downsample_pool = layer.Conv3dBlock( |
91
|
|
|
filters=num_channels[d], kernel_size=3, strides=2, padding="same" |
92
|
|
|
) |
93
|
|
|
tensor_shape = tuple((x + 1) // 2 for x in tensor_shape) |
94
|
|
|
self._downsample_convs.append(downsample_conv) |
95
|
|
|
self._downsample_pools.append(downsample_pool) |
96
|
|
|
self._tensor_shapes.append(tensor_shape) |
97
|
|
|
self._bottom_conv3d = layer.Conv3dBlock( |
98
|
|
|
filters=num_channels[depth], kernel_size=3, padding="same" |
99
|
|
|
) |
100
|
|
|
self._bottom_res3d = layer.ResidualConv3dBlock( |
101
|
|
|
filters=num_channels[depth], kernel_size=3, padding="same" |
102
|
|
|
) |
103
|
|
|
self._upsample_deconvs = [] |
104
|
|
|
self._upsample_convs = [] |
105
|
|
|
for d in range(depth): |
106
|
|
|
padding = layer.deconv_output_padding( |
107
|
|
|
input_shape=self._tensor_shapes[d + 1], |
108
|
|
|
output_shape=self._tensor_shapes[d], |
109
|
|
|
kernel_size=3, |
110
|
|
|
stride=2, |
111
|
|
|
padding="same", |
112
|
|
|
) |
113
|
|
|
upsample_deconv = layer.Deconv3dBlock( |
114
|
|
|
filters=num_channels[d], |
115
|
|
|
output_padding=padding, |
116
|
|
|
kernel_size=3, |
117
|
|
|
strides=2, |
118
|
|
|
padding="same", |
119
|
|
|
) |
120
|
|
|
upsample_conv = tf.keras.Sequential( |
121
|
|
|
[ |
122
|
|
|
layer.Conv3dBlock( |
123
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
124
|
|
|
), |
125
|
|
|
layer.ResidualConv3dBlock( |
126
|
|
|
filters=num_channels[d], kernel_size=3, padding="same" |
127
|
|
|
), |
128
|
|
|
] |
129
|
|
|
) |
130
|
|
|
self._upsample_deconvs.append(upsample_deconv) |
131
|
|
|
self._upsample_convs.append(upsample_conv) |
132
|
|
|
self._output_conv3d = tf.keras.Sequential( |
133
|
|
|
[ |
134
|
|
|
tfkl.Conv3D( |
135
|
|
|
filters=out_channels, |
136
|
|
|
kernel_size=3, |
137
|
|
|
strides=1, |
138
|
|
|
padding="same", |
139
|
|
|
kernel_initializer=out_kernel_initializer, |
140
|
|
|
activation=out_activation, |
141
|
|
|
), |
142
|
|
|
layer.Resize3d(shape=image_size), |
143
|
|
|
] |
144
|
|
|
) |
145
|
|
|
|
146
|
|
|
self.resize = ( |
147
|
|
|
layer.ResizeCPTransform(control_points) |
148
|
|
|
if control_points is not None |
149
|
|
|
else False |
150
|
|
|
) |
151
|
|
|
self.interpolate = ( |
152
|
|
|
layer.BSplines3DTransform(control_points, image_size) |
153
|
|
|
if control_points is not None |
154
|
|
|
else False |
155
|
|
|
) |
156
|
|
|
|
157
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
158
|
|
|
""" |
159
|
|
|
Builds graph based on built layers. |
160
|
|
|
|
161
|
|
|
:param inputs: shape = [batch, f_dim1, f_dim2, f_dim3, in_channels] |
162
|
|
|
:param training: |
163
|
|
|
:param mask: |
164
|
|
|
:return: shape = [batch, f_dim1, f_dim2, f_dim3, out_channels] |
165
|
|
|
""" |
166
|
|
|
|
167
|
|
|
down_sampled = inputs |
168
|
|
|
|
169
|
|
|
# down sample |
170
|
|
|
skips = [] |
171
|
|
|
for d_var in range(self._depth): # level 0 to D-1 |
172
|
|
|
skip = self._downsample_convs[d_var](inputs=down_sampled, training=training) |
173
|
|
|
down_sampled = self._downsample_pools[d_var](inputs=skip, training=training) |
174
|
|
|
skips.append(skip) |
175
|
|
|
|
176
|
|
|
# bottom, level D |
177
|
|
|
up_sampled = self._bottom_res3d( |
178
|
|
|
inputs=self._bottom_conv3d(inputs=down_sampled, training=training), |
179
|
|
|
training=training, |
180
|
|
|
) |
181
|
|
|
|
182
|
|
|
# up sample, level D-1 to 0 |
183
|
|
|
for d_var in range(self._depth - 1, -1, -1): |
184
|
|
|
up_sampled = self._upsample_deconvs[d_var]( |
185
|
|
|
inputs=up_sampled, training=training |
186
|
|
|
) |
187
|
|
|
if self._concat_skip: |
188
|
|
|
up_sampled = tf.concat([up_sampled, skips[d_var]], axis=4) |
189
|
|
|
else: |
190
|
|
|
up_sampled = up_sampled + skips[d_var] |
191
|
|
|
up_sampled = self._upsample_convs[d_var]( |
192
|
|
|
inputs=up_sampled, training=training |
193
|
|
|
) |
194
|
|
|
|
195
|
|
|
# output |
196
|
|
|
output = self._output_conv3d(inputs=up_sampled, training=training) |
197
|
|
|
|
198
|
|
|
if self.resize: |
199
|
|
|
output = self.resize(output) |
200
|
|
|
output = self.interpolate(output) |
201
|
|
|
|
202
|
|
|
return output |
203
|
|
|
|