1
|
|
|
"""This script provides an example of using efficient for training.""" |
2
|
|
|
|
3
|
|
|
import os |
4
|
|
|
import math |
5
|
|
|
import numpy as np |
6
|
|
|
import tensorflow as tf |
7
|
|
|
from tensorflow.keras import layers |
8
|
|
|
from copy import deepcopy |
9
|
|
|
from typing import List, Optional, Tuple, Union |
10
|
|
|
|
11
|
|
|
from deepreg.model import layer |
12
|
|
|
from deepreg.model.backbone import Backbone |
13
|
|
|
from deepreg.model.backbone.local_net import LocalNet |
14
|
|
|
from deepreg.model.backbone.u_net import UNet |
15
|
|
|
from deepreg.model.layer import Extraction |
16
|
|
|
from deepreg.registry import REGISTRY |
17
|
|
|
from deepreg.train import train |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
EFFICIENTNET_PARAMS = { |
21
|
|
|
# model_name: (width_mult, depth_mult, image_size, dropout_rate, dropconnect_rate) |
22
|
|
|
"efficientnet-b0": (1.0, 1.0, 224, 0.2, 0.2), |
23
|
|
|
"efficientnet-b1": (1.0, 1.1, 240, 0.2, 0.2), |
24
|
|
|
"efficientnet-b2": (1.1, 1.2, 260, 0.3, 0.2), |
25
|
|
|
"efficientnet-b3": (1.2, 1.4, 300, 0.3, 0.2), |
26
|
|
|
"efficientnet-b4": (1.4, 1.8, 380, 0.4, 0.2), |
27
|
|
|
"efficientnet-b5": (1.6, 2.2, 456, 0.4, 0.2), |
28
|
|
|
"efficientnet-b6": (1.8, 2.6, 528, 0.5, 0.2), |
29
|
|
|
"efficientnet-b7": (2.0, 3.1, 600, 0.5, 0.2), |
30
|
|
|
} |
31
|
|
|
|
32
|
|
|
# Each Blocks Parameters |
33
|
|
|
DEFAULT_BLOCKS_ARGS = [ |
34
|
|
|
{'kernel_size': 3, 'repeats': 1, 'filters_in': 32, 'filters_out': 16, |
35
|
|
|
'expand_ratio': 1, 'id_skip': True, 'strides': 1, 'se_ratio': 0.25}, |
36
|
|
|
{'kernel_size': 3, 'repeats': 2, 'filters_in': 16, 'filters_out': 24, |
37
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
38
|
|
|
{'kernel_size': 5, 'repeats': 2, 'filters_in': 24, 'filters_out': 40, |
39
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
40
|
|
|
{'kernel_size': 3, 'repeats': 3, 'filters_in': 40, 'filters_out': 80, |
41
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
42
|
|
|
{'kernel_size': 5, 'repeats': 3, 'filters_in': 80, 'filters_out': 112, |
43
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 1, 'se_ratio': 0.25}, |
44
|
|
|
{'kernel_size': 5, 'repeats': 4, 'filters_in': 112, 'filters_out': 192, |
45
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 2, 'se_ratio': 0.25}, |
46
|
|
|
{'kernel_size': 3, 'repeats': 1, 'filters_in': 192, 'filters_out': 320, |
47
|
|
|
'expand_ratio': 6, 'id_skip': True, 'strides': 1, 'se_ratio': 0.25} |
48
|
|
|
] |
49
|
|
|
|
50
|
|
|
# Two Kernel Initializer |
51
|
|
|
CONV_KERNEL_INITIALIZER = { |
52
|
|
|
'class_name': 'VarianceScaling', |
53
|
|
|
'config': { |
54
|
|
|
'scale': 2.0, |
55
|
|
|
'mode': 'fan_out', |
56
|
|
|
'distribution': 'normal' |
57
|
|
|
} |
58
|
|
|
} |
59
|
|
|
|
60
|
|
|
DENSE_KERNEL_INITIALIZER = { |
61
|
|
|
'class_name': 'VarianceScaling', |
62
|
|
|
'config': { |
63
|
|
|
'scale': 1. / 3., |
64
|
|
|
'mode': 'fan_out', |
65
|
|
|
'distribution': 'uniform' |
66
|
|
|
} |
67
|
|
|
} |
68
|
|
|
|
69
|
|
|
|
70
|
|
|
@REGISTRY.register_backbone(name="efficient_net") |
71
|
|
|
class EfficientNet(LocalNet): |
72
|
|
|
""" |
73
|
|
|
Class that implements an Efficient-Net for image registration. |
74
|
|
|
|
75
|
|
|
Reference: |
76
|
|
|
- Author: Mingxing Tan, Quoc V. Le, |
77
|
|
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks |
78
|
|
|
https://arxiv.org/pdf/1905.11946.pdf |
79
|
|
|
""" |
80
|
|
|
def __init__( |
81
|
|
|
self, |
82
|
|
|
image_size: tuple, |
83
|
|
|
num_channel_initial: int, |
84
|
|
|
extract_levels: Tuple[int, ...], |
85
|
|
|
out_kernel_initializer: str, |
86
|
|
|
out_activation: str, |
87
|
|
|
out_channels: int, |
88
|
|
|
depth: Optional[int] = None, |
89
|
|
|
pooling: bool = True, |
90
|
|
|
concat_skip: bool = False, |
91
|
|
|
width_coefficient: float = 1.0, |
92
|
|
|
depth_coefficient: float = 1.0, |
93
|
|
|
default_size: int = 224, |
94
|
|
|
dropout_rate: float = 0.2, |
95
|
|
|
drop_connect_rate: float = 0.2, |
96
|
|
|
depth_divisor: int = 8, |
97
|
|
|
name: str = "EfficientNet", |
98
|
|
|
**kwargs, |
99
|
|
|
): |
100
|
|
|
""" |
101
|
|
|
Init. |
102
|
|
|
|
103
|
|
|
Image is encoded gradually, i from level 0 to D, |
104
|
|
|
then it is decoded gradually, j from level D to 0. |
105
|
|
|
Some of the decoded levels are used for generating extractions. |
106
|
|
|
|
107
|
|
|
So, extract_levels are between [0, D]. |
108
|
|
|
|
109
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
110
|
|
|
:param num_channel_initial: number of initial channels. |
111
|
|
|
:param extract_levels: from which depths the output will be built. |
112
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
113
|
|
|
:param out_activation: activation to use at end layer. |
114
|
|
|
:param out_channels: number of channels for the extractions |
115
|
|
|
:param depth: depth of the encoder. |
116
|
|
|
If depth is not given, depth = max(extract_levels) will be used. |
117
|
|
|
:param pooling: for down-sampling, use non-parameterized |
118
|
|
|
pooling if true, otherwise use conv3d |
119
|
|
|
:param concat_skip: when up-sampling, concatenate skipped |
120
|
|
|
tensor if true, otherwise use addition |
121
|
|
|
:param width_coefficient: float, scaling coefficient for network width. |
122
|
|
|
:param depth_coefficient: float, scaling coefficient for network depth. |
123
|
|
|
:param default_size: int, default input image size. |
124
|
|
|
:param dropout_rate: float, dropout rate before final classifier layer. |
125
|
|
|
:param drop_connect_rate: float, dropout rate at skip connections. |
126
|
|
|
:param depth_divisor: int divisor for depth. |
127
|
|
|
:param name: name of the backbone. |
128
|
|
|
:param kwargs: additional arguments. |
129
|
|
|
""" |
130
|
|
|
if depth is None: |
131
|
|
|
depth = max(extract_levels) |
132
|
|
|
kwargs["encode_kernel_sizes"] = [7] + [3] * depth |
133
|
|
|
super().__init__( |
134
|
|
|
image_size=image_size, |
135
|
|
|
num_channel_initial=num_channel_initial, |
136
|
|
|
depth=depth, |
137
|
|
|
extract_levels=extract_levels, |
138
|
|
|
out_kernel_initializer=out_kernel_initializer, |
139
|
|
|
out_activation=out_activation, |
140
|
|
|
out_channels=out_channels, |
141
|
|
|
use_additive_upsampling = False, |
142
|
|
|
pooling=pooling, |
143
|
|
|
concat_skip=concat_skip, |
144
|
|
|
name=name, |
145
|
|
|
**kwargs, |
146
|
|
|
) |
147
|
|
|
|
148
|
|
|
self.width_coefficient = width_coefficient |
149
|
|
|
self.depth_coefficient = depth_coefficient |
150
|
|
|
self.default_size = default_size |
151
|
|
|
self.dropout_rate = dropout_rate |
152
|
|
|
self.drop_connect_rate = drop_connect_rate |
153
|
|
|
self.depth_divisor = depth_divisor |
154
|
|
|
self.activation_fn = tf.nn.swish |
155
|
|
|
|
156
|
|
View Code Duplication |
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
157
|
|
|
""" |
158
|
|
|
Build compute graph based on built layers. |
159
|
|
|
|
160
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
161
|
|
|
:param training: None or bool. |
162
|
|
|
:param mask: None or tf.Tensor. |
163
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
164
|
|
|
""" |
165
|
|
|
|
166
|
|
|
# encoding / down-sampling |
167
|
|
|
skips = [] |
168
|
|
|
encoded = inputs |
169
|
|
|
for d in range(self._depth): |
170
|
|
|
skip = self._encode_convs[d](inputs=encoded, training=training) |
171
|
|
|
encoded = self._encode_pools[d](inputs=skip, training=training) |
172
|
|
|
skips.append(skip) |
173
|
|
|
|
174
|
|
|
# bottom |
175
|
|
|
decoded = self.build_efficient_net(inputs=encoded, training=training) # type: ignore |
176
|
|
|
|
177
|
|
|
# decoding / up-sampling |
178
|
|
|
outs = [decoded] |
179
|
|
|
for d in range(self._depth - 1, min(self._extract_levels) - 1, -1): |
180
|
|
|
decoded = self._decode_deconvs[d](inputs=decoded, training=training) |
181
|
|
|
decoded = self.build_skip_block()([decoded, skips[d]]) |
182
|
|
|
decoded = self._decode_convs[d](inputs=decoded, training=training) |
183
|
|
|
outs = [decoded] + outs |
184
|
|
|
|
185
|
|
|
# output |
186
|
|
|
output = self._output_block(outs) # type: ignore |
187
|
|
|
|
188
|
|
|
return output |
189
|
|
|
|
190
|
|
|
|
191
|
|
|
def build_efficient_net(self, inputs: tf.Tensor, training=None) -> tf.Tensor: |
192
|
|
|
""" |
193
|
|
|
Builds graph based on built layers. |
194
|
|
|
|
195
|
|
|
:param inputs: shape = (batch, f_dim1, f_dim2, f_dim3, in_channels) |
196
|
|
|
:param training: |
197
|
|
|
:param mask: |
198
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
199
|
|
|
""" |
200
|
|
|
img_input = layers.Input(tensor=inputs, shape=self.image_size) |
201
|
|
|
bn_axis = 4 |
202
|
|
|
x = img_input |
203
|
|
|
# x = layers.ZeroPadding3D(padding=self.correct_pad(x, 3), |
204
|
|
|
# name='stem_conv_pad')(x) |
205
|
|
|
|
206
|
|
|
x = layers.Conv3D(self.round_filters(32), 3, |
207
|
|
|
strides=1, |
208
|
|
|
padding='same', |
209
|
|
|
use_bias=False, |
210
|
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER, |
211
|
|
|
name='stem_conv')(x) |
212
|
|
|
x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x) |
213
|
|
|
x = layers.Activation(self.activation_fn, name='stem_activation')(x) |
214
|
|
|
blocks_args = deepcopy(DEFAULT_BLOCKS_ARGS) |
215
|
|
|
|
216
|
|
|
b = 0 |
217
|
|
|
# Calculate the number of blocks |
218
|
|
|
blocks = float(sum(args['repeats'] for args in blocks_args)) |
219
|
|
|
for (i, args) in enumerate(blocks_args): |
220
|
|
|
assert args['repeats'] > 0 |
221
|
|
|
args['filters_in'] = self.round_filters(args['filters_in']) |
222
|
|
|
args['filters_out'] = self.round_filters(args['filters_out']) |
223
|
|
|
|
224
|
|
|
for j in range(self.round_repeats(args.pop('repeats'))): |
225
|
|
|
if j > 0: |
226
|
|
|
args['strides'] = 1 |
227
|
|
|
args['filters_in'] = args['filters_out'] |
228
|
|
|
x = self.block(x, self.activation_fn, self.drop_connect_rate * b / blocks, |
229
|
|
|
name='block{}{}_'.format(i + 1, chr(j + 97)), **args) |
230
|
|
|
b += 1 |
231
|
|
|
|
232
|
|
|
x = layers.Conv3D(self.round_filters(128), 1, |
233
|
|
|
padding='same', |
234
|
|
|
use_bias=False, |
235
|
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER, |
236
|
|
|
name='top_conv')(x) |
237
|
|
|
x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x) |
238
|
|
|
x = layers.Activation(self.activation_fn, name='top_activation')(x) |
239
|
|
|
|
240
|
|
|
print("input.shape", inputs.shape, x.shape) |
241
|
|
|
return x |
242
|
|
|
|
243
|
|
|
def round_filters(self, filters): |
244
|
|
|
"""Round number of filters based on depth multiplier.""" |
245
|
|
|
filters *= self.width_coefficient |
246
|
|
|
divisor = self.depth_divisor |
247
|
|
|
new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor) |
248
|
|
|
# Make sure that round down does not go down by more than 10%. |
249
|
|
|
if new_filters < 0.9 * filters: |
250
|
|
|
new_filters += divisor |
251
|
|
|
return int(new_filters) |
252
|
|
|
|
253
|
|
|
def round_repeats(self, repeats): |
254
|
|
|
return int(math.ceil(self.depth_coefficient * repeats)) |
255
|
|
|
|
256
|
|
|
def correct_pad(self, inputs, kernel_size): |
257
|
|
|
img_dim = 1 |
258
|
|
|
input_size = backend.int_shape(inputs)[img_dim:(img_dim + 3)] |
|
|
|
|
259
|
|
|
|
260
|
|
|
if isinstance(kernel_size, int): |
261
|
|
|
kernel_size = (kernel_size, kernel_size, kernel_size) |
262
|
|
|
|
263
|
|
|
if input_size[0] is None: |
264
|
|
|
adjust = (1, 1, 1) |
265
|
|
|
else: |
266
|
|
|
adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2, 1 - input_size[2] % 2) |
267
|
|
|
|
268
|
|
|
correct = (kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[2] // 2) |
269
|
|
|
|
270
|
|
|
return ((correct[0] - adjust[0], correct[0]), |
271
|
|
|
(correct[1] - adjust[1], correct[1]), |
272
|
|
|
(correct[2] - adjust[2], correct[2])) |
273
|
|
|
|
274
|
|
|
def block(self, inputs, activation_fn=tf.nn.swish, drop_rate=0., name='', |
275
|
|
|
filters_in=32, filters_out=16, kernel_size=3, strides=1, |
276
|
|
|
expand_ratio=1, se_ratio=0., id_skip=True): |
277
|
|
|
|
278
|
|
|
bn_axis = 4 |
279
|
|
|
|
280
|
|
|
filters = filters_in * expand_ratio |
281
|
|
|
|
282
|
|
|
# Inverted residuals |
283
|
|
|
if expand_ratio != 1: |
284
|
|
|
x = layers.Conv3D(filters, 1, |
285
|
|
|
padding='same', |
286
|
|
|
use_bias=False, |
287
|
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER, |
288
|
|
|
name=name + 'expand_conv')(inputs) |
289
|
|
|
x = layers.BatchNormalization(axis=bn_axis, name=name + 'expand_bn')(x) |
290
|
|
|
x = layers.Activation(activation_fn, name=name + 'expand_activation')(x) |
291
|
|
|
else: |
292
|
|
|
x = inputs |
293
|
|
|
|
294
|
|
|
# padding |
295
|
|
|
# if strides == 2: |
296
|
|
|
# x = layers.ZeroPadding3D(padding=self.correct_pad(x, kernel_size), |
297
|
|
|
# name=name + 'dwconv_pad')(x) |
298
|
|
|
# conv_pad = 'valid' |
299
|
|
|
# else: |
300
|
|
|
# conv_pad = 'same' |
301
|
|
|
|
302
|
|
|
# TODO(Sicong): Find DepthwiseConv3D |
303
|
|
|
# x = layers.DepthwiseConv2D(kernel_size, |
304
|
|
|
# strides=strides, |
305
|
|
|
# padding=conv_pad, |
306
|
|
|
# use_bias=False, |
307
|
|
|
# depthwise_initializer=CONV_KERNEL_INITIALIZER, |
308
|
|
|
# name=name + 'dwconv')(x) |
309
|
|
|
x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x) |
310
|
|
|
x = layers.Activation(activation_fn, name=name + 'activation')(x) |
311
|
|
|
|
312
|
|
|
if 0 < se_ratio <= 1: |
313
|
|
|
filters_se = max(1, int(filters_in * se_ratio)) |
314
|
|
|
se = layers.GlobalAveragePooling3D(name=name + 'se_squeeze')(x) |
315
|
|
|
se = layers.Reshape((1, 1, 1, filters), name=name + 'se_reshape')(se) |
316
|
|
|
se = layers.Conv3D(filters_se, 1, |
317
|
|
|
padding='same', |
318
|
|
|
activation=activation_fn, |
319
|
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER, |
320
|
|
|
name=name + 'se_reduce')(se) |
321
|
|
|
se = layers.Conv3D(filters, 1, |
322
|
|
|
padding='same', |
323
|
|
|
activation='sigmoid', |
324
|
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER, |
325
|
|
|
name=name + 'se_expand')(se) |
326
|
|
|
x = layers.multiply([x, se], name=name + 'se_excite') |
327
|
|
|
|
328
|
|
|
x = layers.Conv3D(filters_out, 1, |
329
|
|
|
padding='same', |
330
|
|
|
use_bias=False, |
331
|
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER, |
332
|
|
|
name=name + 'project_conv')(x) |
333
|
|
|
x = layers.BatchNormalization(axis=bn_axis, name=name + 'project_bn')(x) |
334
|
|
|
|
335
|
|
|
if (id_skip is True and strides == 1 and filters_in == filters_out): |
336
|
|
|
if drop_rate > 0: |
337
|
|
|
x = layers.Dropout(drop_rate, |
338
|
|
|
noise_shape=None, |
339
|
|
|
name=name + 'drop')(x) |
340
|
|
|
x = layers.add([x, inputs], name=name + 'add') |
341
|
|
|
|
342
|
|
|
return x |
343
|
|
|
|
344
|
|
|
def get_config(self) -> dict: |
345
|
|
|
"""Return the config dictionary for recreating this class.""" |
346
|
|
|
config = super().get_config() |
347
|
|
|
return config |
348
|
|
|
|
349
|
|
|
|
350
|
|
|
if __name__ == "__main__": |
351
|
|
|
config_path = "examples/config_efficient_net.yaml" |
352
|
|
|
train( |
353
|
|
|
gpu="", |
354
|
|
|
config_path=config_path, |
355
|
|
|
gpu_allow_growth=True, |
356
|
|
|
ckpt_path="", |
357
|
|
|
) |
358
|
|
|
|