|
1
|
|
|
# coding=utf-8 |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
Module to train a network using init files and a CLI. |
|
5
|
|
|
""" |
|
6
|
|
|
|
|
7
|
|
|
import argparse |
|
8
|
|
|
import os |
|
9
|
|
|
from typing import Dict, List, Tuple, Union |
|
10
|
|
|
|
|
11
|
|
|
import tensorflow as tf |
|
12
|
|
|
|
|
13
|
|
|
import deepreg.config.parser as config_parser |
|
14
|
|
|
import deepreg.model.optimizer as opt |
|
15
|
|
|
from deepreg.callback import build_checkpoint_callback |
|
16
|
|
|
from deepreg.registry import REGISTRY |
|
17
|
|
|
from deepreg.util import build_dataset, build_log_dir |
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
|
def build_config( |
|
21
|
|
|
config_path: Union[str, List[str]], |
|
22
|
|
|
log_dir: str, |
|
23
|
|
|
exp_name: str, |
|
24
|
|
|
ckpt_path: str, |
|
25
|
|
|
max_epochs: int = -1, |
|
26
|
|
|
) -> Tuple[Dict, str, str]: |
|
27
|
|
|
""" |
|
28
|
|
|
Function to initialise log directories, |
|
29
|
|
|
assert that checkpointed model is the right |
|
30
|
|
|
type and to parse the configuration for training. |
|
31
|
|
|
|
|
32
|
|
|
:param config_path: list of str, path to config file |
|
33
|
|
|
:param log_dir: path of the log directory |
|
34
|
|
|
:param exp_name: name of the experiment |
|
35
|
|
|
:param ckpt_path: path where model is stored. |
|
36
|
|
|
:param max_epochs: if max_epochs > 0, use it to overwrite the configuration |
|
37
|
|
|
:return: - config: a dictionary saving configuration |
|
38
|
|
|
- exp_name: the path of directory to save logs |
|
39
|
|
|
""" |
|
40
|
|
|
|
|
41
|
|
|
# init log directory |
|
42
|
|
|
log_dir = build_log_dir(log_dir=log_dir, exp_name=exp_name) |
|
43
|
|
|
|
|
44
|
|
|
# load config |
|
45
|
|
|
config = config_parser.load_configs(config_path) |
|
46
|
|
|
|
|
47
|
|
|
# replace the ~ with user home path |
|
48
|
|
|
ckpt_path = os.path.expanduser(ckpt_path) |
|
49
|
|
|
|
|
50
|
|
|
# overwrite epochs and save_period if necessary |
|
51
|
|
|
if max_epochs > 0: |
|
52
|
|
|
config["train"]["epochs"] = max_epochs |
|
53
|
|
|
config["train"]["save_period"] = min(max_epochs, config["train"]["save_period"]) |
|
54
|
|
|
|
|
55
|
|
|
# backup config |
|
56
|
|
|
config_parser.save(config=config, out_dir=log_dir) |
|
57
|
|
|
|
|
58
|
|
|
# batch_size in original config corresponds to batch_size per GPU |
|
59
|
|
|
gpus = tf.config.experimental.list_physical_devices("GPU") |
|
60
|
|
|
config["train"]["preprocess"]["batch_size"] *= max(len(gpus), 1) |
|
61
|
|
|
|
|
62
|
|
|
return config, log_dir, ckpt_path |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
def train( |
|
66
|
|
|
gpu: str, |
|
67
|
|
|
config_path: Union[str, List[str]], |
|
68
|
|
|
ckpt_path: str, |
|
69
|
|
|
num_cpus: int = -1, |
|
70
|
|
|
gpu_allow_growth: bool = True, |
|
71
|
|
|
exp_name: str = "", |
|
72
|
|
|
log_dir: str = "logs", |
|
73
|
|
|
max_epochs: int = -1, |
|
74
|
|
|
): |
|
75
|
|
|
""" |
|
76
|
|
|
Function to train a model. |
|
77
|
|
|
|
|
78
|
|
|
:param gpu: which local gpu to use to train. |
|
79
|
|
|
:param config_path: path to configuration set up. |
|
80
|
|
|
:param ckpt_path: where to store training checkpoints. |
|
81
|
|
|
:param num_cpus: number of cpus to be used, -1 means not limited. |
|
82
|
|
|
:param gpu_allow_growth: whether to allocate whole GPU memory for training. |
|
83
|
|
|
:param log_dir: path of the log directory. |
|
84
|
|
|
:param exp_name: experiment name. |
|
85
|
|
|
:param max_epochs: if max_epochs > 0, will use it to overwrite the configuration. |
|
86
|
|
|
""" |
|
87
|
|
|
# set env variables |
|
88
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpu |
|
89
|
|
|
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true" if gpu_allow_growth else "false" |
|
90
|
|
|
if num_cpus > 0: |
|
91
|
|
|
# Maximum number of threads to use for OpenMP parallel regions. |
|
92
|
|
|
os.environ["OMP_NUM_THREADS"] = str(num_cpus) |
|
93
|
|
|
# Without setting below 2 environment variables, it didn't work for me. Thanks to @cjw85 |
|
94
|
|
|
os.environ["TF_NUM_INTRAOP_THREADS"] = str(num_cpus) |
|
95
|
|
|
os.environ["TF_NUM_INTEROP_THREADS"] = str(num_cpus) |
|
96
|
|
|
|
|
97
|
|
|
# load config |
|
98
|
|
|
config, log_dir, ckpt_path = build_config( |
|
99
|
|
|
config_path=config_path, |
|
100
|
|
|
log_dir=log_dir, |
|
101
|
|
|
exp_name=exp_name, |
|
102
|
|
|
ckpt_path=ckpt_path, |
|
103
|
|
|
max_epochs=max_epochs, |
|
104
|
|
|
) |
|
105
|
|
|
|
|
106
|
|
|
# build dataset |
|
107
|
|
|
data_loader_train, dataset_train, steps_per_epoch_train = build_dataset( |
|
108
|
|
|
dataset_config=config["dataset"], |
|
109
|
|
|
preprocess_config=config["train"]["preprocess"], |
|
110
|
|
|
mode="train", |
|
111
|
|
|
training=True, |
|
112
|
|
|
repeat=True, |
|
113
|
|
|
) |
|
114
|
|
|
assert data_loader_train is not None # train data should not be None |
|
115
|
|
|
data_loader_val, dataset_val, steps_per_epoch_val = build_dataset( |
|
116
|
|
|
dataset_config=config["dataset"], |
|
117
|
|
|
preprocess_config=config["train"]["preprocess"], |
|
118
|
|
|
mode="valid", |
|
119
|
|
|
training=False, |
|
120
|
|
|
repeat=True, |
|
121
|
|
|
) |
|
122
|
|
|
|
|
123
|
|
|
# use strategy to support multiple GPUs |
|
124
|
|
|
# the network is mirrored in each GPU so that we can use larger batch size |
|
125
|
|
|
# https://www.tensorflow.org/guide/distributed_training |
|
126
|
|
|
# only model, optimizer and metrics need to be defined inside the strategy |
|
127
|
|
|
num_devices = max(len(tf.config.list_physical_devices("GPU")), 1) |
|
128
|
|
|
if num_devices > 1: |
|
129
|
|
|
strategy = tf.distribute.MirroredStrategy() # pragma: no cover |
|
130
|
|
|
else: |
|
131
|
|
|
strategy = tf.distribute.get_strategy() |
|
132
|
|
|
with strategy.scope(): |
|
133
|
|
|
model: tf.keras.Model = REGISTRY.build_model( |
|
134
|
|
|
config=dict( |
|
135
|
|
|
name=config["train"]["method"], |
|
136
|
|
|
moving_image_size=data_loader_train.moving_image_shape, |
|
137
|
|
|
fixed_image_size=data_loader_train.fixed_image_shape, |
|
138
|
|
|
index_size=data_loader_train.num_indices, |
|
139
|
|
|
labeled=config["dataset"]["labeled"], |
|
140
|
|
|
batch_size=config["train"]["preprocess"]["batch_size"], |
|
141
|
|
|
config=config["train"], |
|
142
|
|
|
num_devices=num_devices, |
|
143
|
|
|
) |
|
144
|
|
|
) |
|
145
|
|
|
optimizer = opt.build_optimizer(optimizer_config=config["train"]["optimizer"]) |
|
146
|
|
|
|
|
147
|
|
|
# compile |
|
148
|
|
|
model.compile(optimizer=optimizer) |
|
149
|
|
|
model.plot_model(output_dir=log_dir) |
|
150
|
|
|
|
|
151
|
|
|
# build callbacks |
|
152
|
|
|
tensorboard_callback = tf.keras.callbacks.TensorBoard( |
|
153
|
|
|
log_dir=log_dir, |
|
154
|
|
|
histogram_freq=config["train"]["save_period"], |
|
155
|
|
|
update_freq=config["train"].get("update_freq", "epoch"), |
|
156
|
|
|
) |
|
157
|
|
|
ckpt_callback, initial_epoch = build_checkpoint_callback( |
|
158
|
|
|
model=model, |
|
159
|
|
|
dataset=dataset_train, |
|
160
|
|
|
log_dir=log_dir, |
|
161
|
|
|
save_period=config["train"]["save_period"], |
|
162
|
|
|
ckpt_path=ckpt_path, |
|
163
|
|
|
) |
|
164
|
|
|
callbacks = [tensorboard_callback, ckpt_callback] |
|
165
|
|
|
|
|
166
|
|
|
# train |
|
167
|
|
|
# it's necessary to define the steps_per_epoch |
|
168
|
|
|
# and validation_steps to prevent errors like |
|
169
|
|
|
# BaseCollectiveExecutor::StartAbort Out of range: End of sequence |
|
170
|
|
|
model.fit( |
|
171
|
|
|
x=dataset_train, |
|
172
|
|
|
steps_per_epoch=steps_per_epoch_train, |
|
173
|
|
|
initial_epoch=initial_epoch, |
|
174
|
|
|
epochs=config["train"]["epochs"], |
|
175
|
|
|
validation_data=dataset_val, |
|
176
|
|
|
validation_steps=steps_per_epoch_val, |
|
177
|
|
|
callbacks=callbacks, |
|
178
|
|
|
) |
|
179
|
|
|
|
|
180
|
|
|
# close file loaders in data loaders after training |
|
181
|
|
|
data_loader_train.close() |
|
182
|
|
|
if data_loader_val is not None: |
|
183
|
|
|
data_loader_val.close() |
|
184
|
|
|
|
|
185
|
|
|
|
|
186
|
|
|
def main(args=None): |
|
187
|
|
|
""" |
|
188
|
|
|
Entry point for train script. |
|
189
|
|
|
|
|
190
|
|
|
:param args: arguments |
|
191
|
|
|
""" |
|
192
|
|
|
|
|
193
|
|
|
parser = argparse.ArgumentParser() |
|
194
|
|
|
|
|
195
|
|
|
parser.add_argument( |
|
196
|
|
|
"--gpu", |
|
197
|
|
|
"-g", |
|
198
|
|
|
help="GPU index for training." |
|
199
|
|
|
'-g "" for using CPU' |
|
200
|
|
|
'-g "0" for using GPU 0' |
|
201
|
|
|
'-g "0,1" for using GPU 0 and 1.', |
|
202
|
|
|
type=str, |
|
203
|
|
|
required=True, |
|
204
|
|
|
) |
|
205
|
|
|
|
|
206
|
|
|
parser.add_argument( |
|
207
|
|
|
"--gpu_allow_growth", |
|
208
|
|
|
"-gr", |
|
209
|
|
|
help="Prevent TensorFlow from reserving all available GPU memory", |
|
210
|
|
|
default=False, |
|
211
|
|
|
) |
|
212
|
|
|
|
|
213
|
|
|
parser.add_argument( |
|
214
|
|
|
"--num_cpus", |
|
215
|
|
|
help="Number of CPUs to be used, -1 means unlimited.", |
|
216
|
|
|
type=int, |
|
217
|
|
|
default=-1, |
|
218
|
|
|
) |
|
219
|
|
|
|
|
220
|
|
|
parser.add_argument( |
|
221
|
|
|
"--ckpt_path", |
|
222
|
|
|
"-k", |
|
223
|
|
|
help="Path of the saved model checkpoint to load." |
|
224
|
|
|
"No need to provide if start training from scratch.", |
|
225
|
|
|
default="", |
|
226
|
|
|
type=str, |
|
227
|
|
|
required=False, |
|
228
|
|
|
) |
|
229
|
|
|
|
|
230
|
|
|
parser.add_argument( |
|
231
|
|
|
"--log_dir", help="Path of log directory.", default="logs", type=str |
|
232
|
|
|
) |
|
233
|
|
|
|
|
234
|
|
|
parser.add_argument( |
|
235
|
|
|
"--exp_name", |
|
236
|
|
|
"-l", |
|
237
|
|
|
help="Name of log directory." |
|
238
|
|
|
"The directory is under log root, e.g. logs/ by default." |
|
239
|
|
|
"If not provided, a timestamp based folder will be created.", |
|
240
|
|
|
default="", |
|
241
|
|
|
type=str, |
|
242
|
|
|
) |
|
243
|
|
|
|
|
244
|
|
|
parser.add_argument( |
|
245
|
|
|
"--config_path", |
|
246
|
|
|
"-c", |
|
247
|
|
|
help="Path of config, must end with .yaml. Can pass multiple paths.", |
|
248
|
|
|
type=str, |
|
249
|
|
|
nargs="+", |
|
250
|
|
|
required=True, |
|
251
|
|
|
) |
|
252
|
|
|
|
|
253
|
|
|
parser.add_argument( |
|
254
|
|
|
"--max_epochs", |
|
255
|
|
|
help="The maximum number of epochs, -1 means following configuration.", |
|
256
|
|
|
type=int, |
|
257
|
|
|
default=-1, |
|
258
|
|
|
) |
|
259
|
|
|
|
|
260
|
|
|
args = parser.parse_args(args) |
|
261
|
|
|
train( |
|
262
|
|
|
gpu=args.gpu, |
|
263
|
|
|
config_path=args.config_path, |
|
264
|
|
|
num_cpus=args.num_cpus, |
|
265
|
|
|
gpu_allow_growth=args.gpu_allow_growth, |
|
266
|
|
|
ckpt_path=args.ckpt_path, |
|
267
|
|
|
log_dir=args.log_dir, |
|
268
|
|
|
exp_name=args.exp_name, |
|
269
|
|
|
max_epochs=args.max_epochs, |
|
270
|
|
|
) |
|
271
|
|
|
|
|
272
|
|
|
|
|
273
|
|
|
if __name__ == "__main__": |
|
274
|
|
|
main() # pragma: no cover |
|
275
|
|
|
|