|
1
|
|
|
from test.unit.util import is_equal_tf |
|
2
|
|
|
|
|
3
|
|
|
import numpy as np |
|
4
|
|
|
import pytest |
|
5
|
|
|
import tensorflow as tf |
|
6
|
|
|
|
|
7
|
|
|
from deepreg.loss.kernel import ( |
|
8
|
|
|
cauchy_kernel1d, |
|
9
|
|
|
gaussian_kernel1d_sigma, |
|
10
|
|
|
gaussian_kernel1d_size, |
|
11
|
|
|
rectangular_kernel1d, |
|
12
|
|
|
triangular_kernel1d, |
|
13
|
|
|
) |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
@pytest.mark.parametrize("sigma", [1, 3, 2.2]) |
|
17
|
|
|
def test_cauchy_kernel1d(sigma): |
|
18
|
|
|
""" |
|
19
|
|
|
Testing the 1-D cauchy kernel |
|
20
|
|
|
:param sigma: float |
|
21
|
|
|
:return: |
|
22
|
|
|
""" |
|
23
|
|
|
tail = int(sigma * 5) |
|
24
|
|
|
expected = [1 / ((x / sigma) ** 2 + 1) for x in range(-tail, tail + 1)] |
|
25
|
|
|
expected = expected / np.sum(expected) |
|
26
|
|
|
got = cauchy_kernel1d(sigma) |
|
27
|
|
|
assert is_equal_tf(got, expected) |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
@pytest.mark.parametrize("sigma", [1, 3, 2.2]) |
|
31
|
|
|
def test_gaussian_kernel1d_sigma(sigma): |
|
32
|
|
|
""" |
|
33
|
|
|
Testing the 1-D gaussian kernel given sigma as input |
|
34
|
|
|
:param sigma: float |
|
35
|
|
|
:return: |
|
36
|
|
|
""" |
|
37
|
|
|
tail = int(sigma * 3) |
|
38
|
|
|
expected = [np.exp(-0.5 * x ** 2 / sigma ** 2) for x in range(-tail, tail + 1)] |
|
39
|
|
|
expected = expected / np.sum(expected) |
|
40
|
|
|
got = gaussian_kernel1d_sigma(sigma) |
|
41
|
|
|
assert is_equal_tf(got, expected) |
|
42
|
|
|
|
|
43
|
|
|
|
|
44
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 7, 11]) |
|
45
|
|
|
def test_gaussian_kernel1d_size(kernel_size): |
|
46
|
|
|
""" |
|
47
|
|
|
Testing the 1-D gaussian kernel given size as input |
|
48
|
|
|
:param kernel_size: int |
|
49
|
|
|
:return: |
|
50
|
|
|
""" |
|
51
|
|
|
mean = (kernel_size - 1) / 2.0 |
|
52
|
|
|
sigma = kernel_size / 3 |
|
53
|
|
|
|
|
54
|
|
|
grid = tf.range(0, kernel_size, dtype=tf.float32) |
|
55
|
|
|
expected = tf.exp(-tf.square(grid - mean) / (2 * sigma ** 2)) |
|
56
|
|
|
|
|
57
|
|
|
got = gaussian_kernel1d_size(kernel_size) |
|
58
|
|
|
assert is_equal_tf(got, expected) |
|
59
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 7, 11]) |
|
62
|
|
|
def test_rectangular_kernel1d(kernel_size): |
|
63
|
|
|
""" |
|
64
|
|
|
Testing the 1-D rectangular kernel |
|
65
|
|
|
:param kernel_size: int |
|
66
|
|
|
:return: |
|
67
|
|
|
""" |
|
68
|
|
|
expected = tf.ones(shape=(kernel_size,), dtype=tf.float32) |
|
69
|
|
|
got = rectangular_kernel1d(kernel_size) |
|
70
|
|
|
assert is_equal_tf(got, expected) |
|
71
|
|
|
|
|
72
|
|
|
|
|
73
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 5, 7, 9]) |
|
74
|
|
|
def test_triangular_kernel1d(kernel_size): |
|
75
|
|
|
""" |
|
76
|
|
|
Testing the 1-D triangular kernel |
|
77
|
|
|
:param kernel_size: int (odd number) |
|
78
|
|
|
:return: |
|
79
|
|
|
""" |
|
80
|
|
|
expected = np.zeros(shape=(kernel_size,), dtype=np.float32) |
|
81
|
|
|
expected[kernel_size // 2] = kernel_size // 2 + 1 |
|
82
|
|
|
for it_k in range(kernel_size // 2): |
|
83
|
|
|
expected[it_k] = it_k + 1 |
|
84
|
|
|
expected[-it_k - 1] = it_k + 1 |
|
85
|
|
|
|
|
86
|
|
|
got = triangular_kernel1d(kernel_size) |
|
87
|
|
|
assert is_equal_tf(got, expected) |
|
88
|
|
|
|