1
|
|
|
from test.unit.util import is_equal_tf |
2
|
|
|
|
3
|
|
|
import numpy as np |
4
|
|
|
import pytest |
5
|
|
|
import tensorflow as tf |
6
|
|
|
|
7
|
|
|
from deepreg.loss.kernel import ( |
8
|
|
|
cauchy_kernel1d, |
9
|
|
|
gaussian_kernel1d_sigma, |
10
|
|
|
gaussian_kernel1d_size, |
11
|
|
|
rectangular_kernel1d, |
12
|
|
|
triangular_kernel1d, |
13
|
|
|
) |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
@pytest.mark.parametrize("sigma", [1, 3, 2.2]) |
17
|
|
|
def test_cauchy_kernel1d(sigma): |
18
|
|
|
""" |
19
|
|
|
Testing the 1-D cauchy kernel |
20
|
|
|
:param sigma: float |
21
|
|
|
:return: |
22
|
|
|
""" |
23
|
|
|
tail = int(sigma * 5) |
24
|
|
|
expected = [1 / ((x / sigma) ** 2 + 1) for x in range(-tail, tail + 1)] |
25
|
|
|
expected = expected / np.sum(expected) |
26
|
|
|
got = cauchy_kernel1d(sigma) |
27
|
|
|
assert is_equal_tf(got, expected) |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
@pytest.mark.parametrize("sigma", [1, 3, 2.2]) |
31
|
|
|
def test_gaussian_kernel1d_sigma(sigma): |
32
|
|
|
""" |
33
|
|
|
Testing the 1-D gaussian kernel given sigma as input |
34
|
|
|
:param sigma: float |
35
|
|
|
:return: |
36
|
|
|
""" |
37
|
|
|
tail = int(sigma * 3) |
38
|
|
|
expected = [np.exp(-0.5 * x ** 2 / sigma ** 2) for x in range(-tail, tail + 1)] |
39
|
|
|
expected = expected / np.sum(expected) |
40
|
|
|
got = gaussian_kernel1d_sigma(sigma) |
41
|
|
|
assert is_equal_tf(got, expected) |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 7, 11]) |
45
|
|
|
def test_gaussian_kernel1d_size(kernel_size): |
46
|
|
|
""" |
47
|
|
|
Testing the 1-D gaussian kernel given size as input |
48
|
|
|
:param kernel_size: int |
49
|
|
|
:return: |
50
|
|
|
""" |
51
|
|
|
mean = (kernel_size - 1) / 2.0 |
52
|
|
|
sigma = kernel_size / 3 |
53
|
|
|
|
54
|
|
|
grid = tf.range(0, kernel_size, dtype=tf.float32) |
55
|
|
|
expected = tf.exp(-tf.square(grid - mean) / (2 * sigma ** 2)) |
56
|
|
|
|
57
|
|
|
got = gaussian_kernel1d_size(kernel_size) |
58
|
|
|
assert is_equal_tf(got, expected) |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 7, 11]) |
62
|
|
|
def test_rectangular_kernel1d(kernel_size): |
63
|
|
|
""" |
64
|
|
|
Testing the 1-D rectangular kernel |
65
|
|
|
:param kernel_size: int |
66
|
|
|
:return: |
67
|
|
|
""" |
68
|
|
|
expected = tf.ones(shape=(kernel_size,), dtype=tf.float32) |
69
|
|
|
got = rectangular_kernel1d(kernel_size) |
70
|
|
|
assert is_equal_tf(got, expected) |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 5, 7, 9]) |
74
|
|
|
def test_triangular_kernel1d(kernel_size): |
75
|
|
|
""" |
76
|
|
|
Testing the 1-D triangular kernel |
77
|
|
|
:param kernel_size: int (odd number) |
78
|
|
|
:return: |
79
|
|
|
""" |
80
|
|
|
expected = np.zeros(shape=(kernel_size,), dtype=np.float32) |
81
|
|
|
expected[kernel_size // 2] = kernel_size // 2 + 1 |
82
|
|
|
for it_k in range(kernel_size // 2): |
83
|
|
|
expected[it_k] = it_k + 1 |
84
|
|
|
expected[-it_k - 1] = it_k + 1 |
85
|
|
|
|
86
|
|
|
got = triangular_kernel1d(kernel_size) |
87
|
|
|
assert is_equal_tf(got, expected) |
88
|
|
|
|