1
|
|
|
""" |
2
|
|
|
Tests for deepreg/model/loss/image.py in |
3
|
|
|
pytest style. |
4
|
|
|
Notes: The format of inputs to the function dissimilarity_fn |
5
|
|
|
in image.py should be better converted into tf tensor type beforehand. |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
from test.unit.util import is_equal_tf |
9
|
|
|
from typing import Tuple |
10
|
|
|
|
11
|
|
|
import numpy as np |
12
|
|
|
import pytest |
13
|
|
|
import tensorflow as tf |
14
|
|
|
|
15
|
|
|
import deepreg.loss.image as image |
16
|
|
|
from deepreg.constant import EPS |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
class TestGlobalMutualInformation: |
20
|
|
|
@pytest.mark.parametrize( |
21
|
|
|
"y_true,y_pred,shape,expected", |
22
|
|
|
[ |
23
|
|
|
(0.6, 0.3, (3, 3, 3, 3), 0.0), |
24
|
|
|
(0.6, 0.3, (3, 3, 3, 3, 3), 0.0), |
25
|
|
|
(0.0, 1.0, (3, 3, 3, 3, 3), 0.0), |
26
|
|
|
], |
27
|
|
|
) |
28
|
|
|
def test_zero_info(self, y_true, y_pred, shape, expected): |
29
|
|
|
y_true = y_true * np.ones(shape=shape) |
30
|
|
|
y_pred = y_pred * np.ones(shape=shape) |
31
|
|
|
expected = expected * np.ones(shape=(shape[0],)) |
32
|
|
|
got = image.GlobalMutualInformation().call( |
33
|
|
|
y_true, |
34
|
|
|
y_pred, |
35
|
|
|
) |
36
|
|
|
assert is_equal_tf(got, expected) |
37
|
|
|
|
38
|
|
|
def test_get_config(self): |
39
|
|
|
got = image.GlobalMutualInformation().get_config() |
40
|
|
|
expected = dict( |
41
|
|
|
num_bins=23, |
42
|
|
|
sigma_ratio=0.5, |
43
|
|
|
reduction=tf.keras.losses.Reduction.AUTO, |
44
|
|
|
name="GlobalMutualInformation", |
45
|
|
|
) |
46
|
|
|
assert got == expected |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
@pytest.mark.parametrize("kernel_size", [3, 5, 7]) |
50
|
|
|
@pytest.mark.parametrize("name", ["gaussian", "triangular", "rectangular"]) |
51
|
|
|
def test_kernel_fn(kernel_size, name): |
52
|
|
|
kernel_fn = image.LocalNormalizedCrossCorrelation.kernel_fn_dict[name] |
53
|
|
|
filters = kernel_fn(kernel_size) |
54
|
|
|
assert filters.shape == (kernel_size,) |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
class TestLocalNormalizedCrossCorrelation: |
58
|
|
|
@pytest.mark.parametrize( |
59
|
|
|
("y_true_shape", "y_pred_shape"), |
60
|
|
|
[ |
61
|
|
|
((2, 3, 4, 5), (2, 3, 4, 5)), |
62
|
|
|
((2, 3, 4, 5), (2, 3, 4, 5, 1)), |
63
|
|
|
((2, 3, 4, 5, 1), (2, 3, 4, 5)), |
64
|
|
|
((2, 3, 4, 5, 1), (2, 3, 4, 5, 1)), |
65
|
|
|
], |
66
|
|
|
) |
67
|
|
|
def test_input_shape(self, y_true_shape: Tuple, y_pred_shape: Tuple): |
68
|
|
|
""" |
69
|
|
|
Test input with / without channel axis. |
70
|
|
|
|
71
|
|
|
:param y_true_shape: input shape for y_true. |
72
|
|
|
:param y_pred_shape: input shape for y_pred. |
73
|
|
|
""" |
74
|
|
|
y_true = tf.ones(shape=y_true_shape) |
75
|
|
|
y_pred = tf.ones(shape=y_pred_shape) |
76
|
|
|
got = image.LocalNormalizedCrossCorrelation().call( |
77
|
|
|
y_true, |
78
|
|
|
y_pred, |
79
|
|
|
) |
80
|
|
|
assert got.shape == y_true_shape[:1] |
81
|
|
|
|
82
|
|
|
@pytest.mark.parametrize( |
83
|
|
|
("y_true_shape", "y_pred_shape", "name"), |
84
|
|
|
[ |
85
|
|
|
((2, 3, 4, 5), (2, 3, 4, 5, 6), "y_pred"), |
86
|
|
|
((2, 3, 4, 5, 6), (2, 3, 4, 5), "y_true"), |
87
|
|
|
], |
88
|
|
|
) |
89
|
|
|
def test_input_shape_err(self, y_true_shape: Tuple, y_pred_shape: Tuple, name: str): |
90
|
|
|
""" |
91
|
|
|
Current LNCC does not support image having channel dimension > 1. |
92
|
|
|
|
93
|
|
|
:param y_true_shape: input shape for y_true. |
94
|
|
|
:param y_pred_shape: input shape for y_pred. |
95
|
|
|
:param name: name of the tensor having error. |
96
|
|
|
""" |
97
|
|
|
y_true = tf.ones(shape=y_true_shape) |
98
|
|
|
y_pred = tf.ones(shape=y_pred_shape) |
99
|
|
|
with pytest.raises(ValueError) as err_info: |
100
|
|
|
image.LocalNormalizedCrossCorrelation().call(y_true, y_pred) |
101
|
|
|
assert f"Last dimension of {name} is not one." in str(err_info.value) |
102
|
|
|
|
103
|
|
|
@pytest.mark.parametrize("value", [0.0, 0.5, 1.0]) |
104
|
|
|
@pytest.mark.parametrize( |
105
|
|
|
("smooth_nr", "smooth_dr", "expected"), |
106
|
|
|
[ |
107
|
|
|
(1e-5, 1e-5, 1), |
108
|
|
|
(0, 1e-5, 0), |
109
|
|
|
(1e-5, 0, np.inf), |
110
|
|
|
(0, 0, np.nan), |
111
|
|
|
(1e-7, 1e-7, 1), |
112
|
|
|
], |
113
|
|
|
) |
114
|
|
|
def test_smooth( |
115
|
|
|
self, |
116
|
|
|
value: float, |
117
|
|
|
smooth_nr: float, |
118
|
|
|
smooth_dr: float, |
119
|
|
|
expected: float, |
120
|
|
|
): |
121
|
|
|
""" |
122
|
|
|
Test values in extreme cases where variances are all zero. |
123
|
|
|
|
124
|
|
|
:param value: value for input. |
125
|
|
|
:param smooth_nr: constant for numerator. |
126
|
|
|
:param smooth_dr: constant for denominator. |
127
|
|
|
:param expected: target value. |
128
|
|
|
""" |
129
|
|
|
kernel_size = 5 |
130
|
|
|
mid = kernel_size // 2 |
131
|
|
|
shape = (1, kernel_size, kernel_size, kernel_size, 1) |
132
|
|
|
y_true = tf.ones(shape=shape) * value |
133
|
|
|
y_pred = tf.ones(shape=shape) * value |
134
|
|
|
|
135
|
|
|
got = image.LocalNormalizedCrossCorrelation( |
136
|
|
|
kernel_size=kernel_size, |
137
|
|
|
smooth_nr=smooth_nr, |
138
|
|
|
smooth_dr=smooth_dr, |
139
|
|
|
).calc_ncc( |
140
|
|
|
y_true, |
141
|
|
|
y_pred, |
142
|
|
|
) |
143
|
|
|
got = got[0, mid, mid, mid, 0] |
144
|
|
|
expected = tf.constant(expected) |
145
|
|
|
assert is_equal_tf(got, expected) |
146
|
|
|
|
147
|
|
|
@pytest.mark.parametrize( |
148
|
|
|
"kernel_type", |
149
|
|
|
["rectangular", "gaussian", "triangular"], |
150
|
|
|
) |
151
|
|
|
@pytest.mark.parametrize( |
152
|
|
|
"kernel_size", |
153
|
|
|
[3, 5, 7], |
154
|
|
|
) |
155
|
|
|
def test_exact_value(self, kernel_type, kernel_size): |
156
|
|
|
""" |
157
|
|
|
Test the exact value at the center of a cube. |
158
|
|
|
|
159
|
|
|
:param kernel_type: name of kernel. |
160
|
|
|
:param kernel_size: size of the kernel and the cube. |
161
|
|
|
""" |
162
|
|
|
# init |
163
|
|
|
mid = kernel_size // 2 |
164
|
|
|
tf.random.set_seed(0) |
165
|
|
|
y_true = tf.random.uniform(shape=(1, kernel_size, kernel_size, kernel_size, 1)) |
166
|
|
|
y_pred = tf.random.uniform(shape=(1, kernel_size, kernel_size, kernel_size, 1)) |
167
|
|
|
loss = image.LocalNormalizedCrossCorrelation( |
168
|
|
|
kernel_type=kernel_type, kernel_size=kernel_size |
169
|
|
|
) |
170
|
|
|
|
171
|
|
|
# obtained value |
172
|
|
|
got = loss.calc_ncc(y_true=y_true, y_pred=y_pred) |
173
|
|
|
got = got[0, mid, mid, mid, 0] # center voxel |
174
|
|
|
|
175
|
|
|
# target value |
176
|
|
|
kernel_3d = ( |
177
|
|
|
loss.kernel[:, None, None] |
178
|
|
|
* loss.kernel[None, :, None] |
179
|
|
|
* loss.kernel[None, None, :] |
180
|
|
|
) |
181
|
|
|
kernel_3d = kernel_3d[None, :, :, :, None] |
182
|
|
|
|
183
|
|
|
y_true_mean = tf.reduce_sum(y_true * kernel_3d) / loss.kernel_vol |
184
|
|
|
y_true_normalized = y_true - y_true_mean |
185
|
|
|
y_true_var = tf.reduce_sum(y_true_normalized ** 2 * kernel_3d) |
186
|
|
|
|
187
|
|
|
y_pred_mean = tf.reduce_sum(y_pred * kernel_3d) / loss.kernel_vol |
188
|
|
|
y_pred_normalized = y_pred - y_pred_mean |
189
|
|
|
y_pred_var = tf.reduce_sum(y_pred_normalized ** 2 * kernel_3d) |
190
|
|
|
|
191
|
|
|
cross = tf.reduce_sum(y_true_normalized * y_pred_normalized * kernel_3d) |
192
|
|
|
expected = (cross ** 2 + EPS) / (y_pred_var * y_true_var + EPS) |
193
|
|
|
|
194
|
|
|
# check |
195
|
|
|
assert is_equal_tf(got, expected) |
196
|
|
|
|
197
|
|
|
def test_kernel_error(self): |
198
|
|
|
"""Test the error message when using wrong kernel.""" |
199
|
|
|
with pytest.raises(ValueError) as err_info: |
200
|
|
|
image.LocalNormalizedCrossCorrelation(kernel_type="constant") |
201
|
|
|
assert "Wrong kernel_type constant for LNCC loss type." in str(err_info.value) |
202
|
|
|
|
203
|
|
|
def test_get_config(self): |
204
|
|
|
"""Test the config is saved correctly.""" |
205
|
|
|
got = image.LocalNormalizedCrossCorrelation().get_config() |
206
|
|
|
expected = dict( |
207
|
|
|
kernel_size=9, |
208
|
|
|
kernel_type="rectangular", |
209
|
|
|
reduction=tf.keras.losses.Reduction.AUTO, |
210
|
|
|
name="LocalNormalizedCrossCorrelation", |
211
|
|
|
smooth_nr=1e-5, |
212
|
|
|
smooth_dr=1e-5, |
213
|
|
|
) |
214
|
|
|
assert got == expected |
215
|
|
|
|
216
|
|
|
|
217
|
|
|
class TestGlobalNormalizedCrossCorrelation: |
218
|
|
|
@pytest.mark.parametrize( |
219
|
|
|
"y_true,y_pred,shape,expected", |
220
|
|
|
[ |
221
|
|
|
(0.6, 0.3, (3, 3), 1), |
222
|
|
|
(0.6, 0.3, (3, 3, 3), 1), |
223
|
|
|
(0.6, -0.3, (3, 3, 3), 1), |
224
|
|
|
(0.6, 0.3, (3, 3, 3, 3), 1), |
225
|
|
|
], |
226
|
|
|
) |
227
|
|
|
def test_output(self, y_true, y_pred, shape, expected): |
228
|
|
|
|
229
|
|
|
y_true = y_true * tf.ones(shape=shape) |
230
|
|
|
y_pred = y_pred * tf.ones(shape=shape) |
231
|
|
|
|
232
|
|
|
pad_width = tuple([(0, 0)] + [(1, 1)] * (len(shape) - 1)) |
233
|
|
|
y_true = np.pad(y_true, pad_width=pad_width) |
234
|
|
|
y_pred = np.pad(y_pred, pad_width=pad_width) |
235
|
|
|
|
236
|
|
|
got = image.GlobalNormalizedCrossCorrelation().call( |
237
|
|
|
y_true, |
238
|
|
|
y_pred, |
239
|
|
|
) |
240
|
|
|
|
241
|
|
|
expected = expected * tf.ones(shape=(shape[0],)) |
242
|
|
|
|
243
|
|
|
assert is_equal_tf(got, expected) |
244
|
|
|
|