| 1 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | Module containing utilities for layer inputs | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  | """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | import itertools | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | from typing import Tuple, Union | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | import numpy as np | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  | import tensorflow as tf | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | def get_reference_grid(grid_size: (tuple, list)) -> tf.Tensor: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  |     Generate a 3D grid with given size. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  |     Reference: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |     - volshape_to_meshgrid of neuron | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  |       https://github.com/adalca/neurite/blob/legacy/neuron/utils.py | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |       neuron modifies meshgrid to make it faster, however local | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  |       benchmark suggests tf.meshgrid is better | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |     Note: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  |     for tf.meshgrid, in the 3-D case with inputs of length M, N and P, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |     outputs are of shape (N, M, P) for ‘xy’ indexing and | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  |     (M, N, P) for ‘ij’ indexing. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |     :param grid_size: list or tuple of size 3, [dim1, dim2, dim3] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  |     :return: shape = (dim1, dim2, dim3, 3), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  |              grid[i, j, k, :] = [i j k] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  |     # dim1, dim2, dim3 = grid_size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |     # mesh_grid has three elements, corresponding to i, j, k | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  |     # for i in range(dim1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  |     #     for j in range(dim2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  |     #         for k in range(dim3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  |     #             mesh_grid[0][i,j,k] = i | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |     #             mesh_grid[1][i,j,k] = j | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  |     #             mesh_grid[2][i,j,k] = k | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  |     mesh_grid = tf.meshgrid( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  |         tf.range(grid_size[0]), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  |         tf.range(grid_size[1]), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 45 |  |  |         tf.range(grid_size[2]), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 46 |  |  |         indexing="ij", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 47 |  |  |     )  # has three elements, each shape = (dim1, dim2, dim3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 48 |  |  |     grid = tf.stack(mesh_grid, axis=3)  # shape = (dim1, dim2, dim3, 3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 49 |  |  |     grid = tf.cast(grid, dtype=tf.float32) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 50 |  |  |     return grid | 
            
                                                                                                            
                            
            
                                    
            
            
                | 51 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 52 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 53 |  |  | def get_n_bits_combinations(num_bits: int) -> list: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 54 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 55 |  |  |     Function returning list containing all combinations of n bits. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 56 |  |  |     Given num_bits binary bits, each bit has value 0 or 1, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |     there are in total 2**n_bits combinations. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 58 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  |     :param num_bits: int, number of combinations to evaluate | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  |     :return: a list of length 2**n_bits, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |       return[i] is the binary representation of the decimal integer. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  |     :Example: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  |         >>> from deepreg.model.layer_util import get_n_bits_combinations | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  |         >>> get_n_bits_combinations(3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |         [[0, 0, 0], # 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  |          [0, 0, 1], # 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  |          [0, 1, 0], # 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  |          [0, 1, 1], # 3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  |          [1, 0, 0], # 4 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  |          [1, 0, 1], # 5 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  |          [1, 1, 0], # 6 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  |          [1, 1, 1]] # 7 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  |     assert num_bits >= 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |     return [list(i) for i in itertools.product([0, 1], repeat=num_bits)] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  | def pyramid_combination( | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  |     values: list, weight_floor: list, weight_ceil: list | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  | ) -> tf.Tensor: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  |     r""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  |     Calculates linear interpolation (a weighted sum) using values of | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |     hypercube corners in dimension n. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  |     For example, when num_dimension = len(loc_shape) = num_bits = 3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  |     values correspond to values at corners of following coordinates | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  |     .. code-block:: python | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |         [[0, 0, 0], # even | 
            
                                                                                                            
                            
            
                                    
            
            
                | 92 |  |  |          [0, 0, 1], # odd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  |          [0, 1, 0], # even | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |          [0, 1, 1], # odd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  |          [1, 0, 0], # even | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  |          [1, 0, 1], # odd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  |          [1, 1, 0], # even | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |          [1, 1, 1]] # odd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  |     values[::2] correspond to the corners with last coordinate == 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  |     .. code-block:: python | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  |         [[0, 0, 0], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  |          [0, 1, 0], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  |          [1, 0, 0], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |          [1, 1, 0]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  |     values[1::2] correspond to the corners with last coordinate == 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  |     .. code-block:: python | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  |         [[0, 0, 1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  |          [0, 1, 1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  |          [1, 0, 1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |          [1, 1, 1]] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  |     The weights correspond to the floor corners. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  |     For example, when num_dimension = len(loc_shape) = num_bits = 3, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  |     weight_floor = [f1, f2, f3] (ignoring the batch dimension). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |     weight_ceil = [c1, c2, c3] (ignoring the batch dimension). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  |     So for corner with coords (x, y, z), x, y, z's values are 0 or 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  |     - weight for x = f1 if x = 0 else c1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  |     - weight for y = f2 if y = 0 else c2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  |     - weight for z = f3 if z = 0 else c3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  |     so the weight for (x, y, z) is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  |     .. code-block:: text | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  |         W_xyz = ((1-x) * f1 + x * c1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  |               * ((1-y) * f2 + y * c2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  |               * ((1-z) * f3 + z * c3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  |     Let | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  |     .. code-block:: text | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  |         W_xy = ((1-x) * f1 + x * c1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  |              * ((1-y) * f2 + y * c2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  |     Then | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  |     - W_xy0 = W_xy * f3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  |     - W_xy1 = W_xy * c3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  |     Similar to W_xyz, denote V_xyz the value at (x, y, z), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  |     the final sum V equals | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 152 |  |  |     .. code-block:: text | 
            
                                                                                                            
                            
            
                                    
            
            
                | 153 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 154 |  |  |           sum over x,y,z (V_xyz * W_xyz) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 155 |  |  |         = sum over x,y (V_xy0 * W_xy0 + V_xy1 * W_xy1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 156 |  |  |         = sum over x,y (V_xy0 * W_xy * f3 + V_xy1 * W_xy * c3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 157 |  |  |         = sum over x,y (V_xy0 * W_xy) * f3 + sum over x,y (V_xy1 * W_xy) * c3 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 158 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 159 |  |  |     That's why we call this pyramid combination. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 160 |  |  |     It calculates the linear interpolation gradually, starting from | 
            
                                                                                                            
                            
            
                                    
            
            
                | 161 |  |  |     the last dimension. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 162 |  |  |     The key is that the weight of each corner is the product of the weights | 
            
                                                                                                            
                            
            
                                    
            
            
                | 163 |  |  |     along each dimension. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 164 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 165 |  |  |     :param values: a list having values on the corner, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 166 |  |  |                    it has 2**n tensors of shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 167 |  |  |                    (\*loc_shape) or (batch, \*loc_shape) or (batch, \*loc_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 168 |  |  |                    the order is consistent with get_n_bits_combinations | 
            
                                                                                                            
                            
            
                                    
            
            
                | 169 |  |  |                    loc_shape is independent from n, aka num_dim | 
            
                                                                                                            
                            
            
                                    
            
            
                | 170 |  |  |     :param weight_floor: a list having weights of floor points, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 171 |  |  |                     it has n tensors of shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 172 |  |  |                     (\*loc_shape) or (batch, \*loc_shape) or (batch, \*loc_shape, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 173 |  |  |     :param weight_ceil: a list having weights of ceil points, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 174 |  |  |                     it has n tensors of shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 175 |  |  |                     (\*loc_shape) or (batch, \*loc_shape) or (batch, \*loc_shape, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 176 |  |  |     :return: one tensor of the same shape as an element in values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 177 |  |  |              (\*loc_shape) or (batch, \*loc_shape) or (batch, \*loc_shape, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 178 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 179 |  |  |     v_shape = values[0].shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 180 |  |  |     wf_shape = weight_floor[0].shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 181 |  |  |     wc_shape = weight_ceil[0].shape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 182 |  |  |     if len(v_shape) != len(wf_shape) or len(v_shape) != len(wc_shape): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 183 |  |  |         raise ValueError( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 184 |  |  |             "In pyramid_combination, elements of " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 185 |  |  |             "values, weight_floor, and weight_ceil should have same dimension. " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 186 |  |  |             f"value shape = {v_shape}, " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 187 |  |  |             f"weight_floor = {wf_shape}, " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 188 |  |  |             f"weight_ceil = {wc_shape}." | 
            
                                                                                                            
                            
            
                                    
            
            
                | 189 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 190 |  |  |     if 2 ** len(weight_floor) != len(values): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 191 |  |  |         raise ValueError( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 192 |  |  |             "In pyramid_combination, " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 193 |  |  |             "num_dim = len(weight_floor), " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 194 |  |  |             "len(values) must be 2 ** num_dim, " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 195 |  |  |             f"But len(weight_floor) = {len(weight_floor)}, " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 196 |  |  |             f"len(values) = {len(values)}" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 197 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 198 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 199 |  |  |     if len(weight_floor) == 1:  # one dimension | 
            
                                                                                                            
                            
            
                                    
            
            
                | 200 |  |  |         return values[0] * weight_floor[0] + values[1] * weight_ceil[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 201 |  |  |     # multi dimension | 
            
                                                                                                            
                            
            
                                    
            
            
                | 202 |  |  |     values_floor = pyramid_combination( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 203 |  |  |         values=values[::2], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 204 |  |  |         weight_floor=weight_floor[:-1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 205 |  |  |         weight_ceil=weight_ceil[:-1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 206 |  |  |     ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 207 |  |  |     values_floor = values_floor * weight_floor[-1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 208 |  |  |     values_ceil = pyramid_combination( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 209 |  |  |         values=values[1::2], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 210 |  |  |         weight_floor=weight_floor[:-1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 211 |  |  |         weight_ceil=weight_ceil[:-1], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 212 |  |  |     ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 213 |  |  |     values_ceil = values_ceil * weight_ceil[-1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 214 |  |  |     return values_floor + values_ceil | 
            
                                                                                                            
                            
            
                                    
            
            
                | 215 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 216 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 217 |  |  | def resample( | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 218 |  |  |     vol: tf.Tensor, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 219 |  |  |     loc: tf.Tensor, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 220 |  |  |     interpolation: str = "linear", | 
            
                                                                                                            
                            
            
                                    
            
            
                | 221 |  |  |     zero_boundary: bool = True, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 222 |  |  | ) -> tf.Tensor: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 223 |  |  |     r""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 224 |  |  |     Sample the volume at given locations. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 225 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 226 |  |  |     Input has | 
            
                                                                                                            
                            
            
                                    
            
            
                | 227 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 228 |  |  |     - volume, vol, of shape = (batch, v_dim 1, ..., v_dim n), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 229 |  |  |       or (batch, v_dim 1, ..., v_dim n, ch), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 230 |  |  |       where n is the dimension of volume, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 231 |  |  |       ch is the extra dimension as features. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 232 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 233 |  |  |       Denote vol_shape = (v_dim 1, ..., v_dim n) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 234 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 235 |  |  |     - location, loc, of shape = (batch, l_dim 1, ..., l_dim m, n), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 236 |  |  |       where m is the dimension of output. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 237 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 238 |  |  |       Denote loc_shape = (l_dim 1, ..., l_dim m) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 239 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 240 |  |  |     Reference: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 241 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 242 |  |  |     - neuron's interpn | 
            
                                                                                                            
                            
            
                                    
            
            
                | 243 |  |  |       https://github.com/adalca/neurite/blob/legacy/neuron/utils.py | 
            
                                                                                                            
                            
            
                                    
            
            
                | 244 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 245 |  |  |       Difference | 
            
                                                                                                            
                            
            
                                    
            
            
                | 246 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 247 |  |  |       1. they dont have batch size | 
            
                                                                                                            
                            
            
                                    
            
            
                | 248 |  |  |       2. they support more dimensions in vol | 
            
                                                                                                            
                            
            
                                    
            
            
                | 249 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 250 |  |  |       TODO try not using stack as neuron claims it's slower | 
            
                                                                                                            
                            
            
                                    
            
            
                | 251 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 252 |  |  |     :param vol: shape = (batch, \*vol_shape) or (batch, \*vol_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 253 |  |  |       with the last channel for features | 
            
                                                                                                            
                            
            
                                    
            
            
                | 254 |  |  |     :param loc: shape = (batch, \*loc_shape, n) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 255 |  |  |       such that loc[b, l1, ..., lm, :] = [v1, ..., vn] is of shape (n,), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 256 |  |  |       which represents a point in vol, with coordinates (v1, ..., vn) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 257 |  |  |     :param interpolation: linear only, TODO support nearest | 
            
                                                                                                            
                            
            
                                    
            
            
                | 258 |  |  |     :param zero_boundary: if true, values on or outside boundary will be zeros | 
            
                                                                                                            
                            
            
                                    
            
            
                | 259 |  |  |     :return: shape = (batch, \*loc_shape) or (batch, \*loc_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 260 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 261 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 262 |  |  |     if interpolation != "linear": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 263 |  |  |         raise ValueError("resample supports only linear interpolation") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 264 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 265 |  |  |     # init | 
            
                                                                                                            
                            
            
                                    
            
            
                | 266 |  |  |     batch_size = vol.shape[0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 267 |  |  |     loc_shape = loc.shape[1:-1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 268 |  |  |     dim_vol = loc.shape[-1]  # dimension of vol, n | 
            
                                                                                                            
                            
            
                                    
            
            
                | 269 |  |  |     if dim_vol == len(vol.shape) - 1: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 270 |  |  |         # vol.shape = (batch, *vol_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 271 |  |  |         has_ch = False | 
            
                                                                                                            
                            
            
                                    
            
            
                | 272 |  |  |     elif dim_vol == len(vol.shape) - 2: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 273 |  |  |         # vol.shape = (batch, *vol_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 274 |  |  |         has_ch = True | 
            
                                                                                                            
                            
            
                                    
            
            
                | 275 |  |  |     else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 276 |  |  |         raise ValueError( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 277 |  |  |             "vol shape inconsistent with loc " | 
            
                                                                                                            
                            
            
                                    
            
            
                | 278 |  |  |             "vol.shape = {}, loc.shape = {}".format(vol.shape, loc.shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 279 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 280 |  |  |     vol_shape = vol.shape[1 : dim_vol + 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 281 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 282 |  |  |     # get floor/ceil for loc and stack, then clip together | 
            
                                                                                                            
                            
            
                                    
            
            
                | 283 |  |  |     # loc, loc_floor, loc_ceil are have shape (batch, *loc_shape, n) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 284 |  |  |     loc_ceil = tf.math.ceil(loc) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 285 |  |  |     loc_floor = loc_ceil - 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 286 |  |  |     # (batch, *loc_shape, n, 3) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 287 |  |  |     clipped = tf.stack([loc, loc_floor, loc_ceil], axis=-1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 288 |  |  |     clip_value_max = tf.cast(vol_shape, dtype=clipped.dtype) - 1  # (n,) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 289 |  |  |     clipped_shape = [1] * (len(loc_shape) + 1) + [dim_vol, 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 290 |  |  |     clip_value_max = tf.reshape(clip_value_max, shape=clipped_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 291 |  |  |     clipped = tf.clip_by_value(clipped, clip_value_min=0, clip_value_max=clip_value_max) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 292 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 293 |  |  |     # loc_floor_ceil has n sublists | 
            
                                                                                                            
                            
            
                                    
            
            
                | 294 |  |  |     # each one corresponds to the floor and ceil coordinates for d-th dimension | 
            
                                                                                                            
                            
            
                                    
            
            
                | 295 |  |  |     # each tensor is of shape (batch, *loc_shape), dtype int32 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 296 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 297 |  |  |     # weight_floor has n tensors | 
            
                                                                                                            
                            
            
                                    
            
            
                | 298 |  |  |     # each tensor is the weight for the corner of floor coordinates | 
            
                                                                                                            
                            
            
                                    
            
            
                | 299 |  |  |     # each tensor's shape is (batch, *loc_shape) if volume has no feature channel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 300 |  |  |     #                        (batch, *loc_shape, 1) if volume has feature channel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 301 |  |  |     loc_floor_ceil, weight_floor, weight_ceil = [], [], [] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 302 |  |  |     # using for loop is faster than using list comprehension | 
            
                                                                                                            
                            
            
                                    
            
            
                | 303 |  |  |     for dim in range(dim_vol): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 304 |  |  |         # shape = (batch, *loc_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 305 |  |  |         c_clipped = clipped[..., dim, 0] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 306 |  |  |         c_floor = clipped[..., dim, 1] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 307 |  |  |         c_ceil = clipped[..., dim, 2] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 308 |  |  |         w_floor = c_ceil - c_clipped  # shape = (batch, *loc_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 309 |  |  |         w_ceil = c_clipped - c_floor if zero_boundary else 1 - w_floor | 
            
                                                                                                            
                            
            
                                    
            
            
                | 310 |  |  |         if has_ch: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 311 |  |  |             w_floor = tf.expand_dims(w_floor, -1)  # shape = (batch, *loc_shape, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 312 |  |  |             w_ceil = tf.expand_dims(w_ceil, -1)  # shape = (batch, *loc_shape, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 313 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 314 |  |  |         loc_floor_ceil.append([tf.cast(c_floor, tf.int32), tf.cast(c_ceil, tf.int32)]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 315 |  |  |         weight_floor.append(w_floor) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 316 |  |  |         weight_ceil.append(w_ceil) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 317 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 318 |  |  |     # 2**n corners, each is a list of n binary values | 
            
                                                                                                            
                            
            
                                    
            
            
                | 319 |  |  |     corner_indices = get_n_bits_combinations(num_bits=len(vol_shape)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 320 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 321 |  |  |     # batch_coords[b, l1, ..., lm] = b | 
            
                                                                                                            
                            
            
                                    
            
            
                | 322 |  |  |     # range(batch_size) on axis 0 and repeated on other axes | 
            
                                                                                                            
                            
            
                                    
            
            
                | 323 |  |  |     # add batch coords manually is faster than using batch_dims in tf.gather_nd | 
            
                                                                                                            
                            
            
                                    
            
            
                | 324 |  |  |     batch_coords = tf.tile( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 325 |  |  |         tf.reshape(tf.range(batch_size), [batch_size] + [1] * len(loc_shape)), | 
            
                                                                                                            
                            
            
                                    
            
            
                | 326 |  |  |         [1] + loc_shape, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 327 |  |  |     )  # shape = (batch, *loc_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 328 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 329 |  |  |     # get vol values on n-dim hypercube corners | 
            
                                                                                                            
                            
            
                                    
            
            
                | 330 |  |  |     # corner_values has 2 ** n elements | 
            
                                                                                                            
                            
            
                                    
            
            
                | 331 |  |  |     # each of shape (batch, *loc_shape) or (batch, *loc_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 332 |  |  |     corner_values = [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 333 |  |  |         tf.gather_nd( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 334 |  |  |             vol,  # shape = (batch, *vol_shape) or (batch, *vol_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 335 |  |  |             tf.stack( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 336 |  |  |                 [batch_coords] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 337 |  |  |                 + [loc_floor_ceil[axis][fc_idx] for axis, fc_idx in enumerate(c)], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 338 |  |  |                 axis=-1, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 339 |  |  |             ),  # shape = (batch, *loc_shape, n+1) after stack | 
            
                                                                                                            
                            
            
                                    
            
            
                | 340 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 341 |  |  |         for c in corner_indices  # c is list of len n | 
            
                                                                                                            
                            
            
                                    
            
            
                | 342 |  |  |     ]  # each tensor has shape (batch, *loc_shape) or (batch, *loc_shape, ch) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 343 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 344 |  |  |     # resample | 
            
                                                                                                            
                            
            
                                    
            
            
                | 345 |  |  |     sampled = pyramid_combination( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 346 |  |  |         values=corner_values, weight_floor=weight_floor, weight_ceil=weight_ceil | 
            
                                                                                                            
                            
            
                                    
            
            
                | 347 |  |  |     ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 348 |  |  |     return sampled | 
            
                                                                                                            
                            
            
                                    
            
            
                | 349 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 350 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 351 |  |  | def warp_grid(grid: tf.Tensor, theta: tf.Tensor) -> tf.Tensor: | 
            
                                                                        
                            
            
                                    
            
            
                | 352 |  |  |     """ | 
            
                                                                        
                            
            
                                    
            
            
                | 353 |  |  |     Perform transformation on the grid. | 
            
                                                                        
                            
            
                                    
            
            
                | 354 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 355 |  |  |     - grid_padded[i,j,k,:] = [i j k 1] | 
            
                                                                        
                            
            
                                    
            
            
                | 356 |  |  |     - grid_warped[b,i,j,k,p] = sum_over_q (grid_padded[i,j,k,q] * theta[b,q,p]) | 
            
                                                                        
                            
            
                                    
            
            
                | 357 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 358 |  |  |     :param grid: shape = (dim1, dim2, dim3, 3), grid[i,j,k,:] = [i j k] | 
            
                                                                        
                            
            
                                    
            
            
                | 359 |  |  |     :param theta: parameters of transformation, shape = (batch, 4, 3) | 
            
                                                                        
                            
            
                                    
            
            
                | 360 |  |  |     :return: shape = (batch, dim1, dim2, dim3, 3) | 
            
                                                                        
                            
            
                                    
            
            
                | 361 |  |  |     """ | 
            
                                                                        
                            
            
                                    
            
            
                | 362 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 363 |  |  |     # grid_padded[i,j,k,:] = [i j k 1], shape = (dim1, dim2, dim3, 4) | 
            
                                                                        
                            
            
                                    
            
            
                | 364 |  |  |     grid_padded = tf.concat([grid, tf.ones_like(grid[..., :1])], axis=3) | 
            
                                                                        
                            
            
                                    
            
            
                | 365 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 366 |  |  |     # grid_warped[b,i,j,k,p] = sum_over_q (grid_padded[i,j,k,q] * theta[b,q,p]) | 
            
                                                                        
                            
            
                                    
            
            
                | 367 |  |  |     # shape = (batch, dim1, dim2, dim3, 3) | 
            
                                                                        
                            
            
                                    
            
            
                | 368 |  |  |     grid_warped = tf.einsum("ijkq,bqp->bijkp", grid_padded, theta) | 
            
                                                                        
                            
            
                                    
            
            
                | 369 |  |  |     return grid_warped | 
            
                                                                                                            
                            
            
                                    
            
            
                | 370 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 371 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 372 |  |  | def gaussian_filter_3d(kernel_sigma: (list, tuple, int)) -> tf.Tensor: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 373 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 374 |  |  |     Define a gaussian filter in 3d for smoothing. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 375 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 376 |  |  |     The filter size is defined 3*kernel_sigma | 
            
                                                                                                            
                            
            
                                    
            
            
                | 377 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 378 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 379 |  |  |     :param kernel_sigma: the deviation at each direction (list) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 380 |  |  |         or use an isotropic deviation (int) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 381 |  |  |     :return: kernel: tf.Tensor specify a gaussian kernel of shape: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 382 |  |  |         [3*k for k in kernel_sigma] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 383 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 384 |  |  |     if isinstance(kernel_sigma, int): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 385 |  |  |         kernel_sigma = (kernel_sigma, kernel_sigma, kernel_sigma) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 386 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 387 |  |  |     kernel_size = [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 388 |  |  |         int(np.ceil(ks * 3) + np.mod(np.ceil(ks * 3) + 1, 2)) for ks in kernel_sigma | 
            
                                                                                                            
                            
            
                                    
            
            
                | 389 |  |  |     ] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 390 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 391 |  |  |     # Create a x, y coordinate grid of shape (kernel_size, kernel_size, 2) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 392 |  |  |     coord = [np.arange(ks) for ks in kernel_size] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 393 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 394 |  |  |     xx, yy, zz = np.meshgrid(coord[0], coord[1], coord[2], indexing="ij") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 395 |  |  |     xyz_grid = np.concatenate( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 396 |  |  |         (xx[np.newaxis], yy[np.newaxis], zz[np.newaxis]), axis=0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 397 |  |  |     )  # 2, y, x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 398 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 399 |  |  |     mean = np.asarray([(ks - 1) / 2.0 for ks in kernel_size]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 400 |  |  |     mean = mean.reshape(-1, 1, 1, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 401 |  |  |     variance = np.asarray([ks ** 2.0 for ks in kernel_sigma]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 402 |  |  |     variance = variance.reshape(-1, 1, 1, 1) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 403 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 404 |  |  |     # Calculate the 2-dimensional gaussian kernel which is | 
            
                                                                                                            
                            
            
                                    
            
            
                | 405 |  |  |     # the product of two gaussian distributions for two different | 
            
                                                                                                            
                            
            
                                    
            
            
                | 406 |  |  |     # variables (in this case called x and y) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 407 |  |  |     # 2.506628274631 = sqrt(2 * pi) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 408 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 409 |  |  |     norm_kernel = 1.0 / (np.sqrt(2 * np.pi) ** 3 + np.prod(kernel_sigma)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 410 |  |  |     kernel = norm_kernel * np.exp( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 411 |  |  |         -np.sum((xyz_grid - mean) ** 2.0 / (2 * variance), axis=0) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 412 |  |  |     ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 413 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 414 |  |  |     # Make sure sum of values in gaussian kernel equals 1. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 415 |  |  |     kernel = kernel / np.sum(kernel) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 416 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 417 |  |  |     # Reshape | 
            
                                                                                                            
                            
            
                                    
            
            
                | 418 |  |  |     kernel = kernel.reshape(kernel_size[0], kernel_size[1], kernel_size[2]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 419 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 420 |  |  |     # Total kernel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 421 |  |  |     total_kernel = np.zeros(tuple(kernel_size) + (3, 3)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 422 |  |  |     total_kernel[..., 0, 0] = kernel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 423 |  |  |     total_kernel[..., 1, 1] = kernel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 424 |  |  |     total_kernel[..., 2, 2] = kernel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 425 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 426 |  |  |     return tf.convert_to_tensor(total_kernel, dtype=tf.float32) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 427 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 428 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 429 |  |  | def _deconv_output_padding( | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 430 |  |  |     input_shape: int, output_shape: int, kernel_size: int, stride: int, padding: str | 
            
                                                                                                            
                            
            
                                    
            
            
                | 431 |  |  | ) -> int: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 432 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 433 |  |  |     Calculate output padding for Conv3DTranspose in 1D. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 434 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 435 |  |  |     - output_shape = (input_shape - 1)*stride + kernel_size - 2*pad + output_padding | 
            
                                                                                                            
                            
            
                                    
            
            
                | 436 |  |  |     - output_padding = output_shape - ((input_shape - 1)*stride + kernel_size - 2*pad) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 437 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 438 |  |  |     Reference: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 439 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 440 |  |  |     - https://github.com/tensorflow/tensorflow/blob/r2.3/tensorflow/python/keras/utils/conv_utils.py#L140 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 441 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 442 |  |  |     :param input_shape: shape of Conv3DTranspose input tensor | 
            
                                                                                                            
                            
            
                                    
            
            
                | 443 |  |  |     :param output_shape: shape of Conv3DTranspose output tensor | 
            
                                                                                                            
                            
            
                                    
            
            
                | 444 |  |  |     :param kernel_size: kernel size of Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 445 |  |  |     :param stride: stride of Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 446 |  |  |     :param padding: padding of Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 447 |  |  |     :return: output_padding for Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 448 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 449 |  |  |     if padding == "same": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 450 |  |  |         pad = kernel_size // 2 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 451 |  |  |     elif padding == "valid": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 452 |  |  |         pad = 0 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 453 |  |  |     elif padding == "full": | 
            
                                                                                                            
                            
            
                                    
            
            
                | 454 |  |  |         pad = kernel_size - 1 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 455 |  |  |     else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 456 |  |  |         raise ValueError(f"Unknown padding {padding} in deconv_output_padding") | 
            
                                                                                                            
                            
            
                                    
            
            
                | 457 |  |  |     return output_shape - ((input_shape - 1) * stride + kernel_size - 2 * pad) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 458 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 459 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 460 |  |  | def deconv_output_padding( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 461 |  |  |     input_shape: Union[Tuple[int], int], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 462 |  |  |     output_shape: Union[Tuple[int], int], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 463 |  |  |     kernel_size: Union[Tuple[int], int], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 464 |  |  |     stride: Union[Tuple[int], int], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 465 |  |  |     padding: str, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 466 |  |  | ) -> Union[Tuple[int], int]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 467 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 468 |  |  |     Calculate output padding for Conv3DTranspose in any dimension. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 469 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 470 |  |  |     :param input_shape: shape of Conv3DTranspose input tensor, without batch or channel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 471 |  |  |     :param output_shape: shape of Conv3DTranspose output tensor, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 472 |  |  |         without batch or channel | 
            
                                                                                                            
                            
            
                                    
            
            
                | 473 |  |  |     :param kernel_size: kernel size of Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 474 |  |  |     :param stride: stride of Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 475 |  |  |     :param padding: padding of Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 476 |  |  |     :return: output_padding for Conv3DTranspose layer | 
            
                                                                                                            
                            
            
                                    
            
            
                | 477 |  |  |     """ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 478 |  |  |     if isinstance(input_shape, int): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 479 |  |  |         return _deconv_output_padding( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 480 |  |  |             input_shape=input_shape, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 481 |  |  |             output_shape=output_shape, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 482 |  |  |             kernel_size=kernel_size, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 483 |  |  |             stride=stride, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 484 |  |  |             padding=padding, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 485 |  |  |         ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 486 |  |  |     assert len(input_shape) == len(output_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 487 |  |  |     dim = len(input_shape) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 488 |  |  |     if isinstance(kernel_size, int): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 489 |  |  |         kernel_size = [kernel_size] * dim | 
            
                                                                                                            
                            
            
                                    
            
            
                | 490 |  |  |     if isinstance(stride, int): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 491 |  |  |         stride = [stride] * dim | 
            
                                                                                                            
                            
            
                                    
            
            
                | 492 |  |  |     return tuple( | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 493 |  |  |         [ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 494 |  |  |             _deconv_output_padding( | 
            
                                                                                                            
                            
            
                                    
            
            
                | 495 |  |  |                 input_shape=input_shape[d], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 496 |  |  |                 output_shape=output_shape[d], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 497 |  |  |                 kernel_size=kernel_size[d], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 498 |  |  |                 stride=stride[d], | 
            
                                                                                                            
                            
            
                                    
            
            
                | 499 |  |  |                 padding=padding, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 500 |  |  |             ) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 501 |  |  |             for d in range(dim) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 502 |  |  |         ] | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 503 |  |  |     ) | 
            
                                                        
            
                                    
            
            
                | 504 |  |  |  |