|
1
|
|
|
""" |
|
2
|
|
|
Module containing data augmentation techniques. |
|
3
|
|
|
- 3D Affine/DDF Transforms for moving and fixed images. |
|
4
|
|
|
""" |
|
5
|
|
|
|
|
6
|
|
|
from abc import abstractmethod |
|
7
|
|
|
from typing import Dict |
|
8
|
|
|
|
|
9
|
|
|
import numpy as np |
|
10
|
|
|
import tensorflow as tf |
|
11
|
|
|
|
|
12
|
|
|
from deepreg.model.layer import Resize3d |
|
13
|
|
|
from deepreg.model.layer_util import get_reference_grid, resample, warp_grid |
|
14
|
|
|
from deepreg.registry import REGISTRY |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
class RandomTransformation3D(tf.keras.layers.Layer): |
|
18
|
|
|
""" |
|
19
|
|
|
An interface for different types of transformation. |
|
20
|
|
|
""" |
|
21
|
|
|
|
|
22
|
|
|
def __init__( |
|
23
|
|
|
self, |
|
24
|
|
|
moving_image_size: tuple, |
|
25
|
|
|
fixed_image_size: tuple, |
|
26
|
|
|
batch_size: int, |
|
27
|
|
|
name: str = "RandomTransformation3D", |
|
28
|
|
|
trainable: bool = False, |
|
29
|
|
|
): |
|
30
|
|
|
""" |
|
31
|
|
|
Abstract class for image transformation. |
|
32
|
|
|
|
|
33
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
|
34
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
|
35
|
|
|
:param batch_size: size of mini-batch |
|
36
|
|
|
:param name: name of layer |
|
37
|
|
|
:param trainable: if this layer is trainable |
|
38
|
|
|
""" |
|
39
|
|
|
super().__init__(trainable=trainable, name=name) |
|
40
|
|
|
self.moving_image_size = moving_image_size |
|
41
|
|
|
self.fixed_image_size = fixed_image_size |
|
42
|
|
|
self.batch_size = batch_size |
|
43
|
|
|
self.moving_grid_ref = get_reference_grid(grid_size=moving_image_size) |
|
44
|
|
|
self.fixed_grid_ref = get_reference_grid(grid_size=fixed_image_size) |
|
45
|
|
|
|
|
46
|
|
|
@abstractmethod |
|
47
|
|
|
def gen_transform_params(self) -> (tf.Tensor, tf.Tensor): |
|
48
|
|
|
""" |
|
49
|
|
|
Generates transformation parameters for moving and fixed image. |
|
50
|
|
|
|
|
51
|
|
|
:return: two tensors |
|
52
|
|
|
""" |
|
53
|
|
|
|
|
54
|
|
|
@staticmethod |
|
55
|
|
|
@abstractmethod |
|
56
|
|
|
def transform( |
|
57
|
|
|
image: tf.Tensor, grid_ref: tf.Tensor, params: tf.Tensor |
|
58
|
|
|
) -> tf.Tensor: |
|
59
|
|
|
""" |
|
60
|
|
|
Transforms the reference grid and then resample the image. |
|
61
|
|
|
|
|
62
|
|
|
:param image: shape = (batch, dim1, dim2, dim3) |
|
63
|
|
|
:param grid_ref: shape = (dim1, dim2, dim3, 3) |
|
64
|
|
|
:param params: parameters for transformation |
|
65
|
|
|
:return: shape = (batch, dim1, dim2, dim3) |
|
66
|
|
|
""" |
|
67
|
|
|
|
|
68
|
|
|
def call(self, inputs: Dict[str, tf.Tensor], **kwargs) -> Dict[str, tf.Tensor]: |
|
69
|
|
|
""" |
|
70
|
|
|
Creates random params for the input images and their labels, |
|
71
|
|
|
and params them based on the resampled reference grids. |
|
72
|
|
|
:param inputs: a dict having multiple tensors |
|
73
|
|
|
if labeled: |
|
74
|
|
|
moving_image, shape = (batch, m_dim1, m_dim2, m_dim3) |
|
75
|
|
|
fixed_image, shape = (batch, f_dim1, f_dim2, f_dim3) |
|
76
|
|
|
moving_label, shape = (batch, m_dim1, m_dim2, m_dim3) |
|
77
|
|
|
fixed_label, shape = (batch, f_dim1, f_dim2, f_dim3) |
|
78
|
|
|
indices, shape = (batch, num_indices) |
|
79
|
|
|
else, unlabeled: |
|
80
|
|
|
moving_image, shape = (batch, m_dim1, m_dim2, m_dim3) |
|
81
|
|
|
fixed_image, shape = (batch, f_dim1, f_dim2, f_dim3) |
|
82
|
|
|
indices, shape = (batch, num_indices) |
|
83
|
|
|
:param kwargs: other arguments |
|
84
|
|
|
:return: dictionary with the same structure as inputs |
|
85
|
|
|
""" |
|
86
|
|
|
|
|
87
|
|
|
moving_image = inputs["moving_image"] |
|
88
|
|
|
fixed_image = inputs["fixed_image"] |
|
89
|
|
|
indices = inputs["indices"] |
|
90
|
|
|
|
|
91
|
|
|
moving_params, fixed_params = self.gen_transform_params() |
|
92
|
|
|
|
|
93
|
|
|
moving_image = self.transform(moving_image, self.moving_grid_ref, moving_params) |
|
94
|
|
|
fixed_image = self.transform(fixed_image, self.fixed_grid_ref, fixed_params) |
|
95
|
|
|
|
|
96
|
|
|
if "moving_label" not in inputs: # unlabeled |
|
97
|
|
|
return dict( |
|
98
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
|
99
|
|
|
) |
|
100
|
|
|
moving_label = inputs["moving_label"] |
|
101
|
|
|
fixed_label = inputs["fixed_label"] |
|
102
|
|
|
|
|
103
|
|
|
moving_label = self.transform(moving_label, self.moving_grid_ref, moving_params) |
|
104
|
|
|
fixed_label = self.transform(fixed_label, self.fixed_grid_ref, fixed_params) |
|
105
|
|
|
|
|
106
|
|
|
return dict( |
|
107
|
|
|
moving_image=moving_image, |
|
108
|
|
|
fixed_image=fixed_image, |
|
109
|
|
|
moving_label=moving_label, |
|
110
|
|
|
fixed_label=fixed_label, |
|
111
|
|
|
indices=indices, |
|
112
|
|
|
) |
|
113
|
|
|
|
|
114
|
|
|
def get_config(self) -> dict: |
|
115
|
|
|
"""Return the config dictionary for recreating this class.""" |
|
116
|
|
|
config = super().get_config() |
|
117
|
|
|
config["moving_image_size"] = self.moving_image_size |
|
118
|
|
|
config["fixed_image_size"] = self.fixed_image_size |
|
119
|
|
|
config["batch_size"] = self.batch_size |
|
120
|
|
|
return config |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
|
|
@REGISTRY.register_data_augmentation(name="affine") |
|
124
|
|
|
class RandomAffineTransform3D(RandomTransformation3D): |
|
125
|
|
|
"""Apply random affine transformation to moving/fixed images separately.""" |
|
126
|
|
|
|
|
127
|
|
|
def __init__( |
|
128
|
|
|
self, |
|
129
|
|
|
moving_image_size: tuple, |
|
130
|
|
|
fixed_image_size: tuple, |
|
131
|
|
|
batch_size: int, |
|
132
|
|
|
scale: float = 0.1, |
|
133
|
|
|
name: str = "RandomAffineTransform3D", |
|
134
|
|
|
**kwargs, |
|
135
|
|
|
): |
|
136
|
|
|
""" |
|
137
|
|
|
Init. |
|
138
|
|
|
|
|
139
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
|
140
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
|
141
|
|
|
:param batch_size: size of mini-batch |
|
142
|
|
|
:param scale: a positive float controlling the scale of transformation |
|
143
|
|
|
:param name: name of the layer |
|
144
|
|
|
:param kwargs: extra arguments |
|
145
|
|
|
""" |
|
146
|
|
|
super().__init__( |
|
147
|
|
|
moving_image_size=moving_image_size, |
|
148
|
|
|
fixed_image_size=fixed_image_size, |
|
149
|
|
|
batch_size=batch_size, |
|
150
|
|
|
name=name, |
|
151
|
|
|
**kwargs, |
|
152
|
|
|
) |
|
153
|
|
|
self.scale = scale |
|
154
|
|
|
|
|
155
|
|
|
def get_config(self) -> dict: |
|
156
|
|
|
"""Return the config dictionary for recreating this class.""" |
|
157
|
|
|
config = super().get_config() |
|
158
|
|
|
config["scale"] = self.scale |
|
159
|
|
|
return config |
|
160
|
|
|
|
|
161
|
|
|
def gen_transform_params(self) -> (tf.Tensor, tf.Tensor): |
|
162
|
|
|
""" |
|
163
|
|
|
Function that generates the random 3D transformation parameters |
|
164
|
|
|
for a batch of data for moving and fixed image. |
|
165
|
|
|
|
|
166
|
|
|
:return: a tuple of tensors, each has shape = (batch, 4, 3) |
|
167
|
|
|
""" |
|
168
|
|
|
theta = gen_rand_affine_transform( |
|
169
|
|
|
batch_size=self.batch_size * 2, scale=self.scale |
|
170
|
|
|
) |
|
171
|
|
|
return theta[: self.batch_size], theta[self.batch_size :] |
|
172
|
|
|
|
|
173
|
|
|
@staticmethod |
|
174
|
|
|
def transform( |
|
175
|
|
|
image: tf.Tensor, grid_ref: tf.Tensor, params: tf.Tensor |
|
176
|
|
|
) -> tf.Tensor: |
|
177
|
|
|
""" |
|
178
|
|
|
Transforms the reference grid and then resample the image. |
|
179
|
|
|
|
|
180
|
|
|
:param image: shape = (batch, dim1, dim2, dim3) |
|
181
|
|
|
:param grid_ref: shape = (dim1, dim2, dim3, 3) |
|
182
|
|
|
:param params: shape = (batch, 4, 3) |
|
183
|
|
|
:return: shape = (batch, dim1, dim2, dim3) |
|
184
|
|
|
""" |
|
185
|
|
|
return resample(vol=image, loc=warp_grid(grid_ref, params)) |
|
186
|
|
|
|
|
187
|
|
|
|
|
188
|
|
|
@REGISTRY.register_data_augmentation(name="ddf") |
|
189
|
|
|
class RandomDDFTransform3D(RandomTransformation3D): |
|
190
|
|
|
"""Apply random DDF transformation to moving/fixed images separately.""" |
|
191
|
|
|
|
|
192
|
|
|
def __init__( |
|
193
|
|
|
self, |
|
194
|
|
|
moving_image_size: tuple, |
|
195
|
|
|
fixed_image_size: tuple, |
|
196
|
|
|
batch_size: int, |
|
197
|
|
|
field_strength: int = 1, |
|
198
|
|
|
low_res_size: tuple = (1, 1, 1), |
|
199
|
|
|
name: str = "RandomDDFTransform3D", |
|
200
|
|
|
**kwargs, |
|
201
|
|
|
): |
|
202
|
|
|
""" |
|
203
|
|
|
Creates a DDF transformation for data augmentation. |
|
204
|
|
|
|
|
205
|
|
|
To simulate smooth deformation fields, we interpolate from a low resolution |
|
206
|
|
|
field of size low_res_size using linear interpolation. The variance of the |
|
207
|
|
|
deformation field is drawn from a uniform variable |
|
208
|
|
|
between [0, field_strength]. |
|
209
|
|
|
|
|
210
|
|
|
:param moving_image_size: tuple |
|
211
|
|
|
:param fixed_image_size: tuple |
|
212
|
|
|
:param batch_size: int |
|
213
|
|
|
:param field_strength: int = 1. It is used as the upper bound for the |
|
214
|
|
|
deformation field variance |
|
215
|
|
|
:param low_res_size: tuple = (1, 1, 1). |
|
216
|
|
|
:param name: name of layer |
|
217
|
|
|
:param kwargs: extra arguments |
|
218
|
|
|
""" |
|
219
|
|
|
|
|
220
|
|
|
super().__init__( |
|
221
|
|
|
moving_image_size=moving_image_size, |
|
222
|
|
|
fixed_image_size=fixed_image_size, |
|
223
|
|
|
batch_size=batch_size, |
|
224
|
|
|
name=name, |
|
225
|
|
|
**kwargs, |
|
226
|
|
|
) |
|
227
|
|
|
|
|
228
|
|
|
assert tuple(low_res_size) <= tuple(moving_image_size) |
|
229
|
|
|
assert tuple(low_res_size) <= tuple(fixed_image_size) |
|
230
|
|
|
|
|
231
|
|
|
self.field_strength = field_strength |
|
232
|
|
|
self.low_res_size = low_res_size |
|
233
|
|
|
|
|
234
|
|
|
def get_config(self) -> dict: |
|
235
|
|
|
"""Return the config dictionary for recreating this class.""" |
|
236
|
|
|
config = super().get_config() |
|
237
|
|
|
config["field_strength"] = self.field_strength |
|
238
|
|
|
config["low_res_size"] = self.low_res_size |
|
239
|
|
|
return config |
|
240
|
|
|
|
|
241
|
|
|
def gen_transform_params(self) -> (tf.Tensor, tf.Tensor): |
|
242
|
|
|
""" |
|
243
|
|
|
Generates two random ddf fields for moving and fixed images. |
|
244
|
|
|
|
|
245
|
|
|
:return: tuple, one has shape = (batch, m_dim1, m_dim2, m_dim3, 3) |
|
246
|
|
|
another one has shape = (batch, f_dim1, f_dim2, f_dim3, 3) |
|
247
|
|
|
""" |
|
248
|
|
|
kwargs = dict( |
|
249
|
|
|
batch_size=self.batch_size, |
|
250
|
|
|
field_strength=self.field_strength, |
|
251
|
|
|
low_res_size=self.low_res_size, |
|
252
|
|
|
) |
|
253
|
|
|
moving = gen_rand_ddf(image_size=self.moving_image_size, **kwargs) |
|
254
|
|
|
fixed = gen_rand_ddf(image_size=self.fixed_image_size, **kwargs) |
|
255
|
|
|
return moving, fixed |
|
256
|
|
|
|
|
257
|
|
|
@staticmethod |
|
258
|
|
|
def transform( |
|
259
|
|
|
image: tf.Tensor, grid_ref: tf.Tensor, params: tf.Tensor |
|
260
|
|
|
) -> tf.Tensor: |
|
261
|
|
|
""" |
|
262
|
|
|
Transforms the reference grid and then resample the image. |
|
263
|
|
|
|
|
264
|
|
|
:param image: shape = (batch, dim1, dim2, dim3) |
|
265
|
|
|
:param grid_ref: shape = (dim1, dim2, dim3, 3) |
|
266
|
|
|
:param params: DDF, shape = (batch, dim1, dim2, dim3, 3) |
|
267
|
|
|
:return: shape = (batch, dim1, dim2, dim3) |
|
268
|
|
|
""" |
|
269
|
|
|
return resample(vol=image, loc=grid_ref[None, ...] + params) |
|
270
|
|
|
|
|
271
|
|
|
|
|
272
|
|
|
def resize_inputs( |
|
273
|
|
|
inputs: Dict[str, tf.Tensor], moving_image_size: tuple, fixed_image_size: tuple |
|
274
|
|
|
) -> Dict[str, tf.Tensor]: |
|
275
|
|
|
""" |
|
276
|
|
|
Resize inputs |
|
277
|
|
|
:param inputs: |
|
278
|
|
|
if labeled: |
|
279
|
|
|
moving_image, shape = (None, None, None) |
|
280
|
|
|
fixed_image, shape = (None, None, None) |
|
281
|
|
|
moving_label, shape = (None, None, None) |
|
282
|
|
|
fixed_label, shape = (None, None, None) |
|
283
|
|
|
indices, shape = (num_indices, ) |
|
284
|
|
|
else, unlabeled: |
|
285
|
|
|
moving_image, shape = (None, None, None) |
|
286
|
|
|
fixed_image, shape = (None, None, None) |
|
287
|
|
|
indices, shape = (num_indices, ) |
|
288
|
|
|
:param moving_image_size: tuple, (m_dim1, m_dim2, m_dim3) |
|
289
|
|
|
:param fixed_image_size: tuple, (f_dim1, f_dim2, f_dim3) |
|
290
|
|
|
:return: |
|
291
|
|
|
if labeled: |
|
292
|
|
|
moving_image, shape = (m_dim1, m_dim2, m_dim3) |
|
293
|
|
|
fixed_image, shape = (f_dim1, f_dim2, f_dim3) |
|
294
|
|
|
moving_label, shape = (m_dim1, m_dim2, m_dim3) |
|
295
|
|
|
fixed_label, shape = (f_dim1, f_dim2, f_dim3) |
|
296
|
|
|
indices, shape = (num_indices, ) |
|
297
|
|
|
else, unlabeled: |
|
298
|
|
|
moving_image, shape = (m_dim1, m_dim2, m_dim3) |
|
299
|
|
|
fixed_image, shape = (f_dim1, f_dim2, f_dim3) |
|
300
|
|
|
indices, shape = (num_indices, ) |
|
301
|
|
|
""" |
|
302
|
|
|
moving_image = inputs["moving_image"] |
|
303
|
|
|
fixed_image = inputs["fixed_image"] |
|
304
|
|
|
indices = inputs["indices"] |
|
305
|
|
|
|
|
306
|
|
|
moving_resize_layer = Resize3d(shape=moving_image_size) |
|
307
|
|
|
fixed_resize_layer = Resize3d(shape=fixed_image_size) |
|
308
|
|
|
|
|
309
|
|
|
moving_image = moving_resize_layer(moving_image) |
|
310
|
|
|
fixed_image = fixed_resize_layer(fixed_image) |
|
311
|
|
|
|
|
312
|
|
|
if "moving_label" not in inputs: # unlabeled |
|
313
|
|
|
return dict(moving_image=moving_image, fixed_image=fixed_image, indices=indices) |
|
314
|
|
|
moving_label = inputs["moving_label"] |
|
315
|
|
|
fixed_label = inputs["fixed_label"] |
|
316
|
|
|
|
|
317
|
|
|
moving_label = moving_resize_layer(moving_label) |
|
318
|
|
|
fixed_label = fixed_resize_layer(fixed_label) |
|
319
|
|
|
|
|
320
|
|
|
return dict( |
|
321
|
|
|
moving_image=moving_image, |
|
322
|
|
|
fixed_image=fixed_image, |
|
323
|
|
|
moving_label=moving_label, |
|
324
|
|
|
fixed_label=fixed_label, |
|
325
|
|
|
indices=indices, |
|
326
|
|
|
) |
|
327
|
|
|
|
|
328
|
|
|
|
|
329
|
|
|
def gen_rand_affine_transform( |
|
330
|
|
|
batch_size: int, scale: float, seed: (int, None) = None |
|
331
|
|
|
) -> tf.Tensor: |
|
332
|
|
|
""" |
|
333
|
|
|
Function that generates a random 3D transformation parameters for a batch of data. |
|
334
|
|
|
|
|
335
|
|
|
for 3D coordinates, affine transformation is |
|
336
|
|
|
|
|
337
|
|
|
.. code-block:: text |
|
338
|
|
|
|
|
339
|
|
|
[[x' y' z' 1]] = [[x y z 1]] * [[* * * 0] |
|
340
|
|
|
[* * * 0] |
|
341
|
|
|
[* * * 0] |
|
342
|
|
|
[* * * 1]] |
|
343
|
|
|
|
|
344
|
|
|
where each * represents a degree of freedom, |
|
345
|
|
|
so there are in total 12 degrees of freedom |
|
346
|
|
|
the equation can be denoted as |
|
347
|
|
|
|
|
348
|
|
|
new = old * T |
|
349
|
|
|
|
|
350
|
|
|
where |
|
351
|
|
|
|
|
352
|
|
|
- new is the transformed coordinates, of shape (1, 4) |
|
353
|
|
|
- old is the original coordinates, of shape (1, 4) |
|
354
|
|
|
- T is the transformation matrix, of shape (4, 4) |
|
355
|
|
|
|
|
356
|
|
|
the equation can be simplified to |
|
357
|
|
|
|
|
358
|
|
|
.. code-block:: text |
|
359
|
|
|
|
|
360
|
|
|
[[x' y' z']] = [[x y z 1]] * [[* * *] |
|
361
|
|
|
[* * *] |
|
362
|
|
|
[* * *] |
|
363
|
|
|
[* * *]] |
|
364
|
|
|
|
|
365
|
|
|
so that |
|
366
|
|
|
|
|
367
|
|
|
new = old * T |
|
368
|
|
|
|
|
369
|
|
|
where |
|
370
|
|
|
|
|
371
|
|
|
- new is the transformed coordinates, of shape (1, 3) |
|
372
|
|
|
- old is the original coordinates, of shape (1, 4) |
|
373
|
|
|
- T is the transformation matrix, of shape (4, 3) |
|
374
|
|
|
|
|
375
|
|
|
Given original and transformed coordinates, |
|
376
|
|
|
we can calculate the transformation matrix using |
|
377
|
|
|
|
|
378
|
|
|
x = np.linalg.lstsq(a, b) |
|
379
|
|
|
|
|
380
|
|
|
such that |
|
381
|
|
|
|
|
382
|
|
|
a x = b |
|
383
|
|
|
|
|
384
|
|
|
In our case, |
|
385
|
|
|
|
|
386
|
|
|
- a = old |
|
387
|
|
|
- b = new |
|
388
|
|
|
- x = T |
|
389
|
|
|
|
|
390
|
|
|
To generate random transformation, |
|
391
|
|
|
we choose to add random perturbation to corner coordinates as follows: |
|
392
|
|
|
for corner of coordinates (x, y, z), the noise is |
|
393
|
|
|
|
|
394
|
|
|
-(x, y, z) .* (r1, r2, r3) |
|
395
|
|
|
|
|
396
|
|
|
where ri is a random number between (0, scale). |
|
397
|
|
|
So |
|
398
|
|
|
|
|
399
|
|
|
(x', y', z') = (x, y, z) .* (1-r1, 1-r2, 1-r3) |
|
400
|
|
|
|
|
401
|
|
|
Thus, we can directly sample between 1-scale and 1 instead |
|
402
|
|
|
|
|
403
|
|
|
We choose to calculate the transformation based on |
|
404
|
|
|
four corners in a cube centered at (0, 0, 0). |
|
405
|
|
|
A cube is shown as below, where |
|
406
|
|
|
|
|
407
|
|
|
- C = (-1, -1, -1) |
|
408
|
|
|
- G = (-1, -1, 1) |
|
409
|
|
|
- D = (-1, 1, -1) |
|
410
|
|
|
- A = (1, -1, -1) |
|
411
|
|
|
|
|
412
|
|
|
.. code-block:: text |
|
413
|
|
|
|
|
414
|
|
|
G — — — — — — — — H |
|
415
|
|
|
/ | / | |
|
416
|
|
|
/ | / | |
|
417
|
|
|
/ | / | |
|
418
|
|
|
/ | / | |
|
419
|
|
|
/ | / | |
|
420
|
|
|
E — — — — — — — — F | |
|
421
|
|
|
| | | | |
|
422
|
|
|
| | | | |
|
423
|
|
|
| C — — | — — — — — D |
|
424
|
|
|
| / | / |
|
425
|
|
|
| / | / |
|
426
|
|
|
| / | / |
|
427
|
|
|
| / | / |
|
428
|
|
|
| / | / |
|
429
|
|
|
A — — — — — — — — B |
|
430
|
|
|
|
|
431
|
|
|
:param batch_size: int |
|
432
|
|
|
:param scale: a float number between 0 and 1 |
|
433
|
|
|
:param seed: control the randomness |
|
434
|
|
|
:return: shape = (batch, 4, 3) |
|
435
|
|
|
""" |
|
436
|
|
|
|
|
437
|
|
|
assert 0 <= scale <= 1 |
|
438
|
|
|
np.random.seed(seed) |
|
439
|
|
|
noise = np.random.uniform(1 - scale, 1, [batch_size, 4, 3]) # shape = (batch, 4, 3) |
|
440
|
|
|
|
|
441
|
|
|
# old represents four corners of a cube |
|
442
|
|
|
# corresponding to the corner C G D A as shown above |
|
443
|
|
|
old = np.tile( |
|
444
|
|
|
[[[-1, -1, -1, 1], [-1, -1, 1, 1], [-1, 1, -1, 1], [1, -1, -1, 1]]], |
|
445
|
|
|
[batch_size, 1, 1], |
|
446
|
|
|
) # shape = (batch, 4, 4) |
|
447
|
|
|
new = old[:, :, :3] * noise # shape = (batch, 4, 3) |
|
448
|
|
|
|
|
449
|
|
|
theta = np.array( |
|
450
|
|
|
[np.linalg.lstsq(old[k], new[k], rcond=-1)[0] for k in range(batch_size)] |
|
451
|
|
|
) # shape = (batch, 4, 3) |
|
452
|
|
|
|
|
453
|
|
|
return tf.cast(theta, dtype=tf.float32) |
|
454
|
|
|
|
|
455
|
|
|
|
|
456
|
|
|
def gen_rand_ddf( |
|
457
|
|
|
batch_size: int, |
|
458
|
|
|
image_size: tuple, |
|
459
|
|
|
field_strength: (tuple, list), |
|
460
|
|
|
low_res_size: (tuple, list), |
|
461
|
|
|
seed: (int, None) = None, |
|
462
|
|
|
) -> tf.Tensor: |
|
463
|
|
|
""" |
|
464
|
|
|
Function that generates a random 3D DDF for a batch of data. |
|
465
|
|
|
|
|
466
|
|
|
:param batch_size: |
|
467
|
|
|
:param image_size: |
|
468
|
|
|
:param field_strength: maximum field strength, computed as a U[0,field_strength] |
|
469
|
|
|
:param low_res_size: low_resolution deformation field that will be upsampled to |
|
470
|
|
|
the original size in order to get smooth and more realistic fields. |
|
471
|
|
|
:param seed: control the randomness |
|
472
|
|
|
:return: |
|
473
|
|
|
""" |
|
474
|
|
|
|
|
475
|
|
|
np.random.seed(seed) |
|
476
|
|
|
low_res_strength = np.random.uniform(0, field_strength, (batch_size, 1, 1, 1, 3)) |
|
477
|
|
|
low_res_field = low_res_strength * np.random.randn( |
|
478
|
|
|
batch_size, low_res_size[0], low_res_size[1], low_res_size[2], 3 |
|
479
|
|
|
) |
|
480
|
|
|
high_res_field = Resize3d(shape=image_size)(low_res_field) |
|
481
|
|
|
return high_res_field |
|
482
|
|
|
|