1
|
|
|
# coding=utf-8 |
|
|
|
|
2
|
|
|
|
3
|
|
|
from typing import List, Optional, Tuple, Union |
4
|
|
|
|
5
|
|
|
import tensorflow as tf |
6
|
|
|
import tensorflow.keras.layers as tfkl |
7
|
|
|
|
8
|
|
|
from deepreg.model import layer |
9
|
|
|
from deepreg.model.backbone.u_net import UNet |
10
|
|
|
from deepreg.model.layer import Extraction |
11
|
|
|
from deepreg.registry import REGISTRY |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
class AdditiveUpsampling(tfkl.Layer): |
|
|
|
|
15
|
|
|
def __init__( |
16
|
|
|
self, |
17
|
|
|
filters: int, |
18
|
|
|
output_padding: Union[int, Tuple, List], |
19
|
|
|
kernel_size: Union[int, Tuple, List], |
20
|
|
|
padding: str, |
21
|
|
|
strides: Union[int, Tuple, List], |
22
|
|
|
output_shape: Tuple, |
23
|
|
|
name: str = "AdditiveUpsampling", |
24
|
|
|
): |
25
|
|
|
""" |
26
|
|
|
Addictive up-sampling layer. |
27
|
|
|
|
28
|
|
|
:param filters: number of channels for output |
29
|
|
|
:param output_padding: padding for output |
30
|
|
|
:param kernel_size: arg for deconv3d |
31
|
|
|
:param padding: arg for deconv3d |
32
|
|
|
:param strides: arg for deconv3d |
33
|
|
|
:param output_shape: shape of the output tensor |
34
|
|
|
:param name: name of the layer. |
35
|
|
|
""" |
36
|
|
|
super().__init__(name=name) |
37
|
|
|
self.deconv3d = layer.Deconv3dBlock( |
38
|
|
|
filters=filters, |
39
|
|
|
output_padding=output_padding, |
40
|
|
|
kernel_size=kernel_size, |
41
|
|
|
strides=strides, |
42
|
|
|
padding=padding, |
43
|
|
|
) |
44
|
|
|
self.resize = layer.Resize3d(shape=output_shape) |
45
|
|
|
|
46
|
|
|
def call(self, inputs, **kwargs): |
47
|
|
|
deconved = self.deconv3d(inputs) |
48
|
|
|
resized = self.resize(inputs) |
49
|
|
|
resized = tf.add_n(tf.split(resized, num_or_size_splits=2, axis=4)) |
|
|
|
|
50
|
|
|
return deconved + resized |
51
|
|
|
|
52
|
|
|
def get_config(self) -> dict: |
53
|
|
|
"""Return the config dictionary for recreating this class.""" |
54
|
|
|
config = super().get_config() |
55
|
|
|
deconv_config = self.deconv3d.get_config() |
56
|
|
|
config.update( |
57
|
|
|
filters=deconv_config["filters"], |
58
|
|
|
output_padding=deconv_config["output_padding"], |
59
|
|
|
kernel_size=deconv_config["kernel_size"], |
60
|
|
|
strides=deconv_config["strides"], |
61
|
|
|
padding=deconv_config["padding"], |
62
|
|
|
) |
63
|
|
|
config.update(output_shape=self.resize._shape) |
|
|
|
|
64
|
|
|
return config |
65
|
|
|
|
66
|
|
|
|
67
|
|
|
@REGISTRY.register_backbone(name="local") |
68
|
|
|
class LocalNet(UNet): |
69
|
|
|
""" |
70
|
|
|
Build LocalNet for image registration. |
71
|
|
|
|
72
|
|
|
Reference: |
73
|
|
|
|
74
|
|
|
- Hu, Yipeng, et al. |
75
|
|
|
"Weakly-supervised convolutional neural networks |
76
|
|
|
for multimodal image registration." |
77
|
|
|
Medical image analysis 49 (2018): 1-13. |
78
|
|
|
https://doi.org/10.1016/j.media.2018.07.002 |
79
|
|
|
|
80
|
|
|
- Hu, Yipeng, et al. |
81
|
|
|
"Label-driven weakly-supervised learning |
82
|
|
|
for multimodal deformable image registration," |
83
|
|
|
https://arxiv.org/abs/1711.01666 |
84
|
|
|
""" |
85
|
|
|
|
86
|
|
|
def __init__( |
87
|
|
|
self, |
88
|
|
|
image_size: tuple, |
89
|
|
|
num_channel_initial: int, |
90
|
|
|
extract_levels: Tuple[int], |
91
|
|
|
out_kernel_initializer: str, |
92
|
|
|
out_activation: str, |
93
|
|
|
out_channels: int, |
94
|
|
|
depth: Optional[int] = None, |
95
|
|
|
use_additive_upsampling: bool = True, |
96
|
|
|
pooling: bool = True, |
97
|
|
|
concat_skip: bool = False, |
98
|
|
|
name: str = "LocalNet", |
99
|
|
|
**kwargs, |
100
|
|
|
): |
101
|
|
|
""" |
102
|
|
|
Init. |
103
|
|
|
|
104
|
|
|
Image is encoded gradually, i from level 0 to D, |
105
|
|
|
then it is decoded gradually, j from level D to 0. |
106
|
|
|
Some of the decoded levels are used for generating extractions. |
107
|
|
|
|
108
|
|
|
So, extract_levels are between [0, D]. |
109
|
|
|
|
110
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
111
|
|
|
:param num_channel_initial: number of initial channels. |
112
|
|
|
:param extract_levels: from which depths the output will be built. |
113
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
114
|
|
|
:param out_activation: activation to use at end layer. |
115
|
|
|
:param out_channels: number of channels for the extractions |
116
|
|
|
:param depth: depth of the encoder. |
117
|
|
|
If depth is not given, depth = max(extract_levels) will be used. |
118
|
|
|
:param use_additive_upsampling: whether use additive up-sampling layer |
119
|
|
|
for decoding. |
120
|
|
|
:param pooling: for down-sampling, use non-parameterized |
121
|
|
|
pooling if true, otherwise use conv3d |
122
|
|
|
:param concat_skip: when up-sampling, concatenate skipped |
123
|
|
|
tensor if true, otherwise use addition |
124
|
|
|
:param name: name of the backbone. |
125
|
|
|
:param kwargs: additional arguments. |
126
|
|
|
""" |
127
|
|
|
self._use_additive_upsampling = use_additive_upsampling |
128
|
|
|
if depth is None: |
129
|
|
|
depth = max(extract_levels) |
130
|
|
|
kwargs["encode_kernel_sizes"] = [7] + [3] * depth |
131
|
|
|
super().__init__( |
132
|
|
|
image_size=image_size, |
133
|
|
|
num_channel_initial=num_channel_initial, |
134
|
|
|
depth=depth, |
135
|
|
|
extract_levels=extract_levels, |
136
|
|
|
out_kernel_initializer=out_kernel_initializer, |
137
|
|
|
out_activation=out_activation, |
138
|
|
|
out_channels=out_channels, |
139
|
|
|
pooling=pooling, |
140
|
|
|
concat_skip=concat_skip, |
141
|
|
|
name=name, |
142
|
|
|
**kwargs, |
143
|
|
|
) |
144
|
|
|
|
145
|
|
|
def build_bottom_block( |
146
|
|
|
self, filters: int, kernel_size: int, padding: str |
147
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
148
|
|
|
""" |
149
|
|
|
Build a block for bottom layer. |
150
|
|
|
|
151
|
|
|
This block do not change the tensor shape (width, height, depth), |
152
|
|
|
it only changes the number of channels. |
153
|
|
|
|
154
|
|
|
:param filters: number of channels for output |
155
|
|
|
:param kernel_size: arg for conv3d |
156
|
|
|
:param padding: arg for conv3d |
157
|
|
|
:return: a block consists of one or multiple layers |
158
|
|
|
""" |
159
|
|
|
return layer.Conv3dBlock( |
160
|
|
|
filters=filters, kernel_size=kernel_size, padding=padding |
161
|
|
|
) |
162
|
|
|
|
163
|
|
|
def build_up_sampling_block( |
164
|
|
|
self, |
165
|
|
|
filters: int, |
166
|
|
|
output_padding: int, |
167
|
|
|
kernel_size: int, |
168
|
|
|
padding: str, |
169
|
|
|
strides: int, |
170
|
|
|
output_shape: tuple, |
171
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
172
|
|
|
""" |
173
|
|
|
Build a block for up-sampling. |
174
|
|
|
|
175
|
|
|
This block changes the tensor shape (width, height, depth), |
176
|
|
|
but it does not changes the number of channels. |
177
|
|
|
|
178
|
|
|
:param filters: number of channels for output |
179
|
|
|
:param output_padding: padding for output |
180
|
|
|
:param kernel_size: arg for deconv3d |
181
|
|
|
:param padding: arg for deconv3d |
182
|
|
|
:param strides: arg for deconv3d |
183
|
|
|
:param output_shape: shape of the output tensor |
184
|
|
|
:return: a block consists of one or multiple layers |
185
|
|
|
""" |
186
|
|
|
|
187
|
|
|
if self._use_additive_upsampling: |
188
|
|
|
return AdditiveUpsampling( |
189
|
|
|
filters=filters, |
190
|
|
|
output_padding=output_padding, |
191
|
|
|
kernel_size=kernel_size, |
192
|
|
|
strides=strides, |
193
|
|
|
padding=padding, |
194
|
|
|
output_shape=output_shape, |
195
|
|
|
) |
196
|
|
|
|
197
|
|
|
return layer.Deconv3dBlock( |
198
|
|
|
filters=filters, |
199
|
|
|
output_padding=output_padding, |
200
|
|
|
kernel_size=kernel_size, |
201
|
|
|
strides=strides, |
202
|
|
|
padding=padding, |
203
|
|
|
) |
204
|
|
|
|
205
|
|
|
def build_output_block( |
206
|
|
|
self, |
207
|
|
|
image_size: Tuple[int], |
208
|
|
|
extract_levels: Tuple[int], |
209
|
|
|
out_channels: int, |
210
|
|
|
out_kernel_initializer: str, |
211
|
|
|
out_activation: str, |
212
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
213
|
|
|
""" |
214
|
|
|
Build a block for output. |
215
|
|
|
|
216
|
|
|
The input to this block is a list of tensors. |
217
|
|
|
|
218
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
219
|
|
|
:param extract_levels: number of extraction levels. |
220
|
|
|
:param out_channels: number of channels for the extractions |
221
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
222
|
|
|
:param out_activation: activation to use at end layer. |
223
|
|
|
:return: a block consists of one or multiple layers |
224
|
|
|
""" |
225
|
|
|
return Extraction( |
226
|
|
|
image_size=image_size, |
227
|
|
|
extract_levels=extract_levels, |
228
|
|
|
out_channels=out_channels, |
229
|
|
|
out_kernel_initializer=out_kernel_initializer, |
230
|
|
|
out_activation=out_activation, |
231
|
|
|
) |
232
|
|
|
|
233
|
|
|
def get_config(self) -> dict: |
234
|
|
|
"""Return the config dictionary for recreating this class.""" |
235
|
|
|
config = super().get_config() |
236
|
|
|
config.update(use_additive_upsampling=self._use_additive_upsampling) |
237
|
|
|
return config |
238
|
|
|
|