1
|
|
|
"""Provide different loss or metrics classes for images.""" |
2
|
|
|
import tensorflow as tf |
3
|
|
|
|
4
|
|
|
from deepreg.constant import EPS |
5
|
|
|
from deepreg.loss.util import NegativeLossMixin |
6
|
|
|
from deepreg.loss.util import gaussian_kernel1d_size as gaussian_kernel1d |
7
|
|
|
from deepreg.loss.util import ( |
8
|
|
|
rectangular_kernel1d, |
9
|
|
|
separable_filter, |
10
|
|
|
triangular_kernel1d, |
11
|
|
|
) |
12
|
|
|
from deepreg.registry import REGISTRY |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
@REGISTRY.register_loss(name="ssd") |
16
|
|
|
class SumSquaredDifference(tf.keras.losses.Loss): |
17
|
|
|
""" |
18
|
|
|
Sum of squared distance between y_true and y_pred. |
19
|
|
|
|
20
|
|
|
y_true and y_pred have to be at least 1d tensor, including batch axis. |
21
|
|
|
""" |
22
|
|
|
|
23
|
|
|
def __init__( |
24
|
|
|
self, |
25
|
|
|
reduction: str = tf.keras.losses.Reduction.SUM, |
26
|
|
|
name: str = "SumSquaredDifference", |
27
|
|
|
): |
28
|
|
|
""" |
29
|
|
|
Init. |
30
|
|
|
|
31
|
|
|
:param reduction: using SUM reduction over batch axis, |
32
|
|
|
this is for supporting multi-device training, |
33
|
|
|
and the loss will be divided by global batch size, |
34
|
|
|
calling the loss like `loss(y_true, y_pred)` will return a scalar tensor. |
35
|
|
|
:param name: name of the loss |
36
|
|
|
""" |
37
|
|
|
super().__init__(reduction=reduction, name=name) |
38
|
|
|
|
39
|
|
|
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor: |
40
|
|
|
""" |
41
|
|
|
Return loss for a batch. |
42
|
|
|
|
43
|
|
|
:param y_true: shape = (batch, ...) |
44
|
|
|
:param y_pred: shape = (batch, ...) |
45
|
|
|
:return: shape = (batch,) |
46
|
|
|
""" |
47
|
|
|
loss = tf.math.squared_difference(y_true, y_pred) |
48
|
|
|
loss = tf.keras.layers.Flatten()(loss) |
49
|
|
|
return tf.reduce_mean(loss, axis=1) |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
class GlobalMutualInformation(tf.keras.losses.Loss): |
53
|
|
|
""" |
54
|
|
|
Differentiable global mutual information via Parzen windowing method. |
55
|
|
|
|
56
|
|
|
y_true and y_pred have to be at least 4d tensor, including batch axis. |
57
|
|
|
|
58
|
|
|
Reference: https://dspace.mit.edu/handle/1721.1/123142, |
59
|
|
|
Section 3.1, equation 3.1-3.5, Algorithm 1 |
60
|
|
|
""" |
61
|
|
|
|
62
|
|
|
def __init__( |
63
|
|
|
self, |
64
|
|
|
num_bins: int = 23, |
65
|
|
|
sigma_ratio: float = 0.5, |
66
|
|
|
reduction: str = tf.keras.losses.Reduction.SUM, |
67
|
|
|
name: str = "GlobalMutualInformation", |
68
|
|
|
): |
69
|
|
|
""" |
70
|
|
|
Init. |
71
|
|
|
|
72
|
|
|
:param num_bins: number of bins for intensity, the default value is empirical. |
73
|
|
|
:param sigma_ratio: a hyper param for gaussian function |
74
|
|
|
:param reduction: using SUM reduction over batch axis, |
75
|
|
|
this is for supporting multi-device training, |
76
|
|
|
and the loss will be divided by global batch size, |
77
|
|
|
calling the loss like `loss(y_true, y_pred)` will return a scalar tensor. |
78
|
|
|
:param name: name of the loss |
79
|
|
|
""" |
80
|
|
|
super().__init__(reduction=reduction, name=name) |
81
|
|
|
self.num_bins = num_bins |
82
|
|
|
self.sigma_ratio = sigma_ratio |
83
|
|
|
|
84
|
|
|
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor: |
85
|
|
|
""" |
86
|
|
|
Return loss for a batch. |
87
|
|
|
|
88
|
|
|
:param y_true: shape = (batch, dim1, dim2, dim3) |
89
|
|
|
or (batch, dim1, dim2, dim3, ch) |
90
|
|
|
:param y_pred: shape = (batch, dim1, dim2, dim3) |
91
|
|
|
or (batch, dim1, dim2, dim3, ch) |
92
|
|
|
:return: shape = (batch,) |
93
|
|
|
""" |
94
|
|
|
# adjust |
95
|
|
|
if len(y_true.shape) == 4: |
96
|
|
|
y_true = tf.expand_dims(y_true, axis=4) |
97
|
|
|
y_pred = tf.expand_dims(y_pred, axis=4) |
98
|
|
|
assert len(y_true.shape) == len(y_pred.shape) == 5 |
99
|
|
|
|
100
|
|
|
# intensity is split into bins between 0, 1 |
101
|
|
|
y_true = tf.clip_by_value(y_true, 0, 1) |
102
|
|
|
y_pred = tf.clip_by_value(y_pred, 0, 1) |
103
|
|
|
bin_centers = tf.linspace(0.0, 1.0, self.num_bins) # (num_bins,) |
104
|
|
|
bin_centers = tf.cast(bin_centers, dtype=y_true.dtype) |
105
|
|
|
bin_centers = bin_centers[None, None, ...] # (1, 1, num_bins) |
106
|
|
|
sigma = ( |
107
|
|
|
tf.reduce_mean(bin_centers[:, :, 1:] - bin_centers[:, :, :-1]) |
108
|
|
|
* self.sigma_ratio |
109
|
|
|
) # scalar, sigma in the Gaussian function (weighting function W) |
110
|
|
|
preterm = 1 / (2 * tf.math.square(sigma)) # scalar |
111
|
|
|
batch, w, h, z, c = y_true.shape |
112
|
|
|
y_true = tf.reshape(y_true, [batch, w * h * z * c, 1]) # (batch, nb_voxels, 1) |
113
|
|
|
y_pred = tf.reshape(y_pred, [batch, w * h * z * c, 1]) # (batch, nb_voxels, 1) |
114
|
|
|
nb_voxels = y_true.shape[1] * 1.0 # w * h * z, number of voxels |
115
|
|
|
|
116
|
|
|
# each voxel contributes continuously to a range of histogram bin |
117
|
|
|
ia = tf.math.exp( |
118
|
|
|
-preterm * tf.math.square(y_true - bin_centers) |
119
|
|
|
) # (batch, nb_voxels, num_bins) |
120
|
|
|
ia /= tf.reduce_sum(ia, -1, keepdims=True) # (batch, nb_voxels, num_bins) |
121
|
|
|
ia = tf.transpose(ia, (0, 2, 1)) # (batch, num_bins, nb_voxels) |
122
|
|
|
pa = tf.reduce_mean(ia, axis=-1, keepdims=True) # (batch, num_bins, 1) |
123
|
|
|
|
124
|
|
|
ib = tf.math.exp( |
125
|
|
|
-preterm * tf.math.square(y_pred - bin_centers) |
126
|
|
|
) # (batch, nb_voxels, num_bins) |
127
|
|
|
ib /= tf.reduce_sum(ib, -1, keepdims=True) # (batch, nb_voxels, num_bins) |
128
|
|
|
pb = tf.reduce_mean(ib, axis=1, keepdims=True) # (batch, 1, num_bins) |
129
|
|
|
|
130
|
|
|
papb = tf.matmul(pa, pb) # (batch, num_bins, num_bins) |
131
|
|
|
pab = tf.matmul(ia, ib) # (batch, num_bins, num_bins) |
132
|
|
|
pab /= nb_voxels |
133
|
|
|
|
134
|
|
|
# MI: sum(P_ab * log(P_ab/P_ap_b)) |
135
|
|
|
div = (pab + EPS) / (papb + EPS) |
136
|
|
|
return tf.reduce_sum(pab * tf.math.log(div + EPS), axis=[1, 2]) |
137
|
|
|
|
138
|
|
|
def get_config(self) -> dict: |
139
|
|
|
"""Return the config dictionary for recreating this class.""" |
140
|
|
|
config = super().get_config() |
141
|
|
|
config["num_bins"] = self.num_bins |
142
|
|
|
config["sigma_ratio"] = self.sigma_ratio |
143
|
|
|
return config |
144
|
|
|
|
145
|
|
|
|
146
|
|
|
@REGISTRY.register_loss(name="gmi") |
147
|
|
|
class GlobalMutualInformationLoss(NegativeLossMixin, GlobalMutualInformation): |
148
|
|
|
"""Revert the sign of GlobalMutualInformation.""" |
149
|
|
|
|
150
|
|
|
|
151
|
|
|
class LocalNormalizedCrossCorrelation(tf.keras.losses.Loss): |
152
|
|
|
""" |
153
|
|
|
Local squared zero-normalized cross-correlation. |
154
|
|
|
|
155
|
|
|
Denote y_true as t and y_pred as p. Consider a window having n elements. |
156
|
|
|
Each position in the window corresponds a weight w_i for i=1:n. |
157
|
|
|
|
158
|
|
|
Define the discrete expectation in the window E[t] as |
159
|
|
|
|
160
|
|
|
E[t] = sum_i(w_i * t_i) / sum_i(w_i) |
161
|
|
|
|
162
|
|
|
Similarly, the discrete variance in the window V[t] is |
163
|
|
|
|
164
|
|
|
V[t] = E[t**2] - E[t] ** 2 |
165
|
|
|
|
166
|
|
|
The local squared zero-normalized cross-correlation is therefore |
167
|
|
|
|
168
|
|
|
E[ (t-E[t]) * (p-E[p]) ] ** 2 / V[t] / V[p] |
169
|
|
|
|
170
|
|
|
where the expectation in numerator is |
171
|
|
|
|
172
|
|
|
E[ (t-E[t]) * (p-E[p]) ] = E[t * p] - E[t] * E[p] |
173
|
|
|
|
174
|
|
|
Different kernel corresponds to different weights. |
175
|
|
|
|
176
|
|
|
For now, y_true and y_pred have to be at least 4d tensor, including batch axis. |
177
|
|
|
|
178
|
|
|
Reference: |
179
|
|
|
|
180
|
|
|
- Zero-normalized cross-correlation (ZNCC): |
181
|
|
|
https://en.wikipedia.org/wiki/Cross-correlation |
182
|
|
|
- Code: https://github.com/voxelmorph/voxelmorph/blob/legacy/src/losses.py |
183
|
|
|
""" |
184
|
|
|
|
185
|
|
|
kernel_fn_dict = dict( |
186
|
|
|
gaussian=gaussian_kernel1d, |
187
|
|
|
rectangular=rectangular_kernel1d, |
188
|
|
|
triangular=triangular_kernel1d, |
189
|
|
|
) |
190
|
|
|
|
191
|
|
|
def __init__( |
192
|
|
|
self, |
193
|
|
|
kernel_size: int = 9, |
194
|
|
|
kernel_type: str = "rectangular", |
195
|
|
|
smooth_nr: float = EPS, |
196
|
|
|
smooth_dr: float = EPS, |
197
|
|
|
reduction: str = tf.keras.losses.Reduction.SUM, |
198
|
|
|
name: str = "LocalNormalizedCrossCorrelation", |
199
|
|
|
): |
200
|
|
|
""" |
201
|
|
|
Init. |
202
|
|
|
|
203
|
|
|
:param kernel_size: int. Kernel size or kernel sigma for kernel_type='gauss'. |
204
|
|
|
:param kernel_type: str, rectangular, triangular or gaussian |
205
|
|
|
:param smooth_nr: small constant added to numerator in case of zero covariance. |
206
|
|
|
:param smooth_dr: small constant added to denominator in case of zero variance. |
207
|
|
|
:param reduction: using SUM reduction over batch axis, |
208
|
|
|
this is for supporting multi-device training, |
209
|
|
|
and the loss will be divided by global batch size, |
210
|
|
|
calling the loss like `loss(y_true, y_pred)` will return a scalar tensor. |
211
|
|
|
:param name: name of the loss |
212
|
|
|
""" |
213
|
|
|
super().__init__(reduction=reduction, name=name) |
214
|
|
|
if kernel_type not in self.kernel_fn_dict.keys(): |
215
|
|
|
raise ValueError( |
216
|
|
|
f"Wrong kernel_type {kernel_type} for LNCC loss type. " |
217
|
|
|
f"Feasible values are {self.kernel_fn_dict.keys()}" |
218
|
|
|
) |
219
|
|
|
self.kernel_fn = self.kernel_fn_dict[kernel_type] |
220
|
|
|
self.kernel_type = kernel_type |
221
|
|
|
self.kernel_size = kernel_size |
222
|
|
|
self.smooth_nr = smooth_nr |
223
|
|
|
self.smooth_dr = smooth_dr |
224
|
|
|
|
225
|
|
|
# (kernel_size, ) |
226
|
|
|
self.kernel = self.kernel_fn(kernel_size=self.kernel_size) |
227
|
|
|
# E[1] = sum_i(w_i), () |
228
|
|
|
self.kernel_vol = tf.reduce_sum( |
229
|
|
|
self.kernel[:, None, None] |
230
|
|
|
* self.kernel[None, :, None] |
231
|
|
|
* self.kernel[None, None, :] |
232
|
|
|
) |
233
|
|
|
|
234
|
|
|
def calc_ncc(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor: |
235
|
|
|
""" |
236
|
|
|
Return NCC for a batch. |
237
|
|
|
|
238
|
|
|
The kernel should not be normalized, as normalizing them leads to computation |
239
|
|
|
with small values and the precision will be reduced. |
240
|
|
|
Here both numerator and denominator are actually multiplied by kernel volume, |
241
|
|
|
which helps the precision as well. |
242
|
|
|
However, when the variance is zero, the obtained value might be negative due to |
243
|
|
|
machine error. Therefore a hard-coded clipping is added to |
244
|
|
|
prevent division by zero. |
245
|
|
|
|
246
|
|
|
:param y_true: shape = (batch, dim1, dim2, dim3, 1) |
247
|
|
|
:param y_pred: shape = (batch, dim1, dim2, dim3, 1) |
248
|
|
|
:return: shape = (batch, dim1, dim2, dim3. 1) |
249
|
|
|
""" |
250
|
|
|
|
251
|
|
|
# t = y_true, p = y_pred |
252
|
|
|
# (batch, dim1, dim2, dim3, 1) |
253
|
|
|
t2 = y_true * y_true |
254
|
|
|
p2 = y_pred * y_pred |
255
|
|
|
tp = y_true * y_pred |
256
|
|
|
|
257
|
|
|
# sum over kernel |
258
|
|
|
# (batch, dim1, dim2, dim3, 1) |
259
|
|
|
t_sum = separable_filter(y_true, kernel=self.kernel) # E[t] * E[1] |
260
|
|
|
p_sum = separable_filter(y_pred, kernel=self.kernel) # E[p] * E[1] |
261
|
|
|
t2_sum = separable_filter(t2, kernel=self.kernel) # E[tt] * E[1] |
262
|
|
|
p2_sum = separable_filter(p2, kernel=self.kernel) # E[pp] * E[1] |
263
|
|
|
tp_sum = separable_filter(tp, kernel=self.kernel) # E[tp] * E[1] |
264
|
|
|
|
265
|
|
|
# average over kernel |
266
|
|
|
# (batch, dim1, dim2, dim3, 1) |
267
|
|
|
t_avg = t_sum / self.kernel_vol # E[t] |
268
|
|
|
p_avg = p_sum / self.kernel_vol # E[p] |
269
|
|
|
|
270
|
|
|
# shape = (batch, dim1, dim2, dim3, 1) |
271
|
|
|
cross = tp_sum - p_avg * t_sum # E[tp] * E[1] - E[p] * E[t] * E[1] |
272
|
|
|
t_var = t2_sum - t_avg * t_sum # V[t] * E[1] |
273
|
|
|
p_var = p2_sum - p_avg * p_sum # V[p] * E[1] |
274
|
|
|
|
275
|
|
|
# ensure variance >= 0 |
276
|
|
|
t_var = tf.maximum(t_var, 0) |
277
|
|
|
p_var = tf.maximum(p_var, 0) |
278
|
|
|
|
279
|
|
|
# (E[tp] - E[p] * E[t]) ** 2 / V[t] / V[p] |
280
|
|
|
ncc = (cross * cross + self.smooth_nr) / (t_var * p_var + self.smooth_dr) |
281
|
|
|
|
282
|
|
|
return ncc |
283
|
|
|
|
284
|
|
|
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor: |
285
|
|
|
""" |
286
|
|
|
Return loss for a batch. |
287
|
|
|
|
288
|
|
|
TODO: support channel axis dimension > 1. |
289
|
|
|
|
290
|
|
|
:param y_true: shape = (batch, dim1, dim2, dim3) |
291
|
|
|
or (batch, dim1, dim2, dim3, 1) |
292
|
|
|
:param y_pred: shape = (batch, dim1, dim2, dim3) |
293
|
|
|
or (batch, dim1, dim2, dim3, 1) |
294
|
|
|
:return: shape = (batch,) |
295
|
|
|
""" |
296
|
|
|
# sanity checks |
297
|
|
|
if len(y_true.shape) == 4: |
298
|
|
|
y_true = tf.expand_dims(y_true, axis=4) |
299
|
|
|
if y_true.shape[4] != 1: |
300
|
|
|
raise ValueError( |
301
|
|
|
"Last dimension of y_true is not one. " f"y_true.shape = {y_true.shape}" |
302
|
|
|
) |
303
|
|
|
if len(y_pred.shape) == 4: |
304
|
|
|
y_pred = tf.expand_dims(y_pred, axis=4) |
305
|
|
|
if y_pred.shape[4] != 1: |
306
|
|
|
raise ValueError( |
307
|
|
|
"Last dimension of y_pred is not one. " f"y_pred.shape = {y_pred.shape}" |
308
|
|
|
) |
309
|
|
|
|
310
|
|
|
ncc = self.calc_ncc(y_true=y_true, y_pred=y_pred) |
311
|
|
|
return tf.reduce_mean(ncc, axis=[1, 2, 3, 4]) |
312
|
|
|
|
313
|
|
|
def get_config(self) -> dict: |
314
|
|
|
"""Return the config dictionary for recreating this class.""" |
315
|
|
|
config = super().get_config() |
316
|
|
|
config.update( |
317
|
|
|
kernel_size=self.kernel_size, |
318
|
|
|
kernel_type=self.kernel_type, |
319
|
|
|
smooth_nr=self.smooth_nr, |
320
|
|
|
smooth_dr=self.smooth_dr, |
321
|
|
|
) |
322
|
|
|
return config |
323
|
|
|
|
324
|
|
|
|
325
|
|
|
@REGISTRY.register_loss(name="lncc") |
326
|
|
|
class LocalNormalizedCrossCorrelationLoss( |
327
|
|
|
NegativeLossMixin, LocalNormalizedCrossCorrelation |
328
|
|
|
): |
329
|
|
|
"""Revert the sign of LocalNormalizedCrossCorrelation.""" |
330
|
|
|
|
331
|
|
|
|
332
|
|
|
class GlobalNormalizedCrossCorrelation(tf.keras.losses.Loss): |
333
|
|
|
""" |
334
|
|
|
Global squared zero-normalized cross-correlation. |
335
|
|
|
|
336
|
|
|
Compute the squared cross-correlation between the reference and moving images |
337
|
|
|
y_true and y_pred have to be at least 4d tensor, including batch axis. |
338
|
|
|
|
339
|
|
|
Reference: |
340
|
|
|
|
341
|
|
|
- Zero-normalized cross-correlation (ZNCC): |
342
|
|
|
https://en.wikipedia.org/wiki/Cross-correlation |
343
|
|
|
|
344
|
|
|
""" |
345
|
|
|
|
346
|
|
|
def __init__( |
347
|
|
|
self, |
348
|
|
|
reduction: str = tf.keras.losses.Reduction.AUTO, |
349
|
|
|
name: str = "GlobalNormalizedCrossCorrelation", |
350
|
|
|
): |
351
|
|
|
""" |
352
|
|
|
Init. |
353
|
|
|
:param reduction: using AUTO reduction, |
354
|
|
|
calling the loss like `loss(y_true, y_pred)` will return a scalar tensor. |
355
|
|
|
:param name: name of the loss |
356
|
|
|
""" |
357
|
|
|
super().__init__(reduction=reduction, name=name) |
358
|
|
|
|
359
|
|
|
def call(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor: |
360
|
|
|
""" |
361
|
|
|
Return loss for a batch. |
362
|
|
|
|
363
|
|
|
:param y_true: shape = (batch, ...) |
364
|
|
|
:param y_pred: shape = (batch, ...) |
365
|
|
|
:return: shape = (batch,) |
366
|
|
|
""" |
367
|
|
|
|
368
|
|
|
axis = [a for a in range(1, len(y_true.shape))] |
369
|
|
|
mu_pred = tf.reduce_mean(y_pred, axis=axis, keepdims=True) |
370
|
|
|
mu_true = tf.reduce_mean(y_true, axis=axis, keepdims=True) |
371
|
|
|
var_pred = tf.math.reduce_variance(y_pred, axis=axis) |
372
|
|
|
var_true = tf.math.reduce_variance(y_true, axis=axis) |
373
|
|
|
numerator = tf.abs( |
374
|
|
|
tf.reduce_mean((y_pred - mu_pred) * (y_true - mu_true), axis=axis) |
375
|
|
|
) |
376
|
|
|
|
377
|
|
|
return (numerator * numerator + EPS) / (var_pred * var_true + EPS) |
378
|
|
|
|
379
|
|
|
|
380
|
|
|
@REGISTRY.register_loss(name="gncc") |
381
|
|
|
class GlobalNormalizedCrossCorrelationLoss( |
382
|
|
|
NegativeLossMixin, GlobalNormalizedCrossCorrelation |
383
|
|
|
): |
384
|
|
|
"""Revert the sign of GlobalNormalizedCrossCorrelation.""" |
385
|
|
|
|