1
|
|
|
import logging |
2
|
|
|
import os |
3
|
|
|
from abc import abstractmethod |
4
|
|
|
from copy import deepcopy |
5
|
|
|
from typing import Dict, Optional, Tuple |
6
|
|
|
|
7
|
|
|
import tensorflow as tf |
8
|
|
|
|
9
|
|
|
from deepreg.loss.label import DiceScore, compute_centroid_distance |
10
|
|
|
from deepreg.model import layer, layer_util |
11
|
|
|
from deepreg.model.backbone import GlobalNet |
12
|
|
|
from deepreg.registry import REGISTRY |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def dict_without(d: dict, key) -> dict: |
16
|
|
|
""" |
17
|
|
|
Return a copy of the given dict without a certain key. |
18
|
|
|
|
19
|
|
|
:param d: dict to be copied. |
20
|
|
|
:param key: key to be removed. |
21
|
|
|
:return: the copy without a key |
22
|
|
|
""" |
23
|
|
|
copied = deepcopy(d) |
24
|
|
|
copied.pop(key) |
25
|
|
|
return copied |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class RegistrationModel(tf.keras.Model): |
29
|
|
|
"""Interface for registration model.""" |
30
|
|
|
|
31
|
|
|
def __init__( |
32
|
|
|
self, |
33
|
|
|
moving_image_size: tuple, |
34
|
|
|
fixed_image_size: tuple, |
35
|
|
|
index_size: int, |
36
|
|
|
labeled: bool, |
37
|
|
|
batch_size: int, |
38
|
|
|
config: dict, |
39
|
|
|
num_devices: int = 1, |
40
|
|
|
name: str = "RegistrationModel", |
41
|
|
|
): |
42
|
|
|
""" |
43
|
|
|
Init. |
44
|
|
|
|
45
|
|
|
:param moving_image_size: (m_dim1, m_dim2, m_dim3) |
46
|
|
|
:param fixed_image_size: (f_dim1, f_dim2, f_dim3) |
47
|
|
|
:param index_size: number of indices for identify each sample |
48
|
|
|
:param labeled: if the data is labeled |
49
|
|
|
:param batch_size: size of mini-batch |
50
|
|
|
:param config: config for method, backbone, and loss. |
51
|
|
|
:param num_devices: number of GPU used, |
52
|
|
|
global_batch_size = batch_size*num_devices |
53
|
|
|
:param name: name of the model |
54
|
|
|
""" |
55
|
|
|
super().__init__(name=name) |
56
|
|
|
self.moving_image_size = moving_image_size |
57
|
|
|
self.fixed_image_size = fixed_image_size |
58
|
|
|
self.index_size = index_size |
59
|
|
|
self.labeled = labeled |
60
|
|
|
self.batch_size = batch_size |
61
|
|
|
self.config = config |
62
|
|
|
self.num_devices = num_devices |
63
|
|
|
self.global_batch_size = num_devices * batch_size |
64
|
|
|
|
65
|
|
|
self._inputs = None # save inputs of self._model as dict |
66
|
|
|
self._outputs = None # save outputs of self._model as dict |
67
|
|
|
|
68
|
|
|
self.grid_ref = layer_util.get_reference_grid(grid_size=fixed_image_size)[ |
69
|
|
|
None, ... |
70
|
|
|
] |
71
|
|
|
self._model: tf.keras.Model = self.build_model() |
72
|
|
|
self.build_loss() |
73
|
|
|
|
74
|
|
|
def get_config(self) -> dict: |
75
|
|
|
"""Return the config dictionary for recreating this class.""" |
76
|
|
|
return dict( |
77
|
|
|
moving_image_size=self.moving_image_size, |
78
|
|
|
fixed_image_size=self.fixed_image_size, |
79
|
|
|
index_size=self.index_size, |
80
|
|
|
labeled=self.labeled, |
81
|
|
|
batch_size=self.batch_size, |
82
|
|
|
config=self.config, |
83
|
|
|
num_devices=self.num_devices, |
84
|
|
|
name=self.name, |
85
|
|
|
) |
86
|
|
|
|
87
|
|
|
@abstractmethod |
88
|
|
|
def build_model(self): |
89
|
|
|
"""Build the model to be saved as self._model.""" |
90
|
|
|
|
91
|
|
|
def build_inputs(self) -> Dict[str, tf.keras.layers.Input]: |
92
|
|
|
""" |
93
|
|
|
Build input tensors. |
94
|
|
|
|
95
|
|
|
:return: dict of inputs. |
96
|
|
|
""" |
97
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
98
|
|
|
moving_image = tf.keras.Input( |
99
|
|
|
shape=self.moving_image_size, |
100
|
|
|
batch_size=self.batch_size, |
101
|
|
|
name="moving_image", |
102
|
|
|
) |
103
|
|
|
# (batch, f_dim1, f_dim2, f_dim3, 1) |
104
|
|
|
fixed_image = tf.keras.Input( |
105
|
|
|
shape=self.fixed_image_size, |
106
|
|
|
batch_size=self.batch_size, |
107
|
|
|
name="fixed_image", |
108
|
|
|
) |
109
|
|
|
# (batch, index_size) |
110
|
|
|
indices = tf.keras.Input( |
111
|
|
|
shape=(self.index_size,), |
112
|
|
|
batch_size=self.batch_size, |
113
|
|
|
name="indices", |
114
|
|
|
) |
115
|
|
|
|
116
|
|
|
if not self.labeled: |
117
|
|
|
return dict( |
118
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
119
|
|
|
) |
120
|
|
|
|
121
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
122
|
|
|
moving_label = tf.keras.Input( |
123
|
|
|
shape=self.moving_image_size, |
124
|
|
|
batch_size=self.batch_size, |
125
|
|
|
name="moving_label", |
126
|
|
|
) |
127
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
128
|
|
|
fixed_label = tf.keras.Input( |
129
|
|
|
shape=self.fixed_image_size, |
130
|
|
|
batch_size=self.batch_size, |
131
|
|
|
name="fixed_label", |
132
|
|
|
) |
133
|
|
|
return dict( |
134
|
|
|
moving_image=moving_image, |
135
|
|
|
fixed_image=fixed_image, |
136
|
|
|
moving_label=moving_label, |
137
|
|
|
fixed_label=fixed_label, |
138
|
|
|
indices=indices, |
139
|
|
|
) |
140
|
|
|
|
141
|
|
|
def concat_images( |
142
|
|
|
self, |
143
|
|
|
moving_image: tf.Tensor, |
144
|
|
|
fixed_image: tf.Tensor, |
145
|
|
|
moving_label: Optional[tf.Tensor] = None, |
146
|
|
|
) -> tf.Tensor: |
147
|
|
|
""" |
148
|
|
|
Adjust image shape and concatenate them together. |
149
|
|
|
|
150
|
|
|
:param moving_image: registration source |
151
|
|
|
:param fixed_image: registration target |
152
|
|
|
:param moving_label: optional, only used for conditional model. |
153
|
|
|
:return: |
154
|
|
|
""" |
155
|
|
|
images = [] |
156
|
|
|
|
157
|
|
|
resize_layer = layer.Resize3d(shape=self.fixed_image_size) |
158
|
|
|
|
159
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
160
|
|
|
moving_image = tf.expand_dims(moving_image, axis=4) |
161
|
|
|
moving_image = resize_layer(moving_image) |
162
|
|
|
images.append(moving_image) |
163
|
|
|
|
164
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
165
|
|
|
fixed_image = tf.expand_dims(fixed_image, axis=4) |
166
|
|
|
images.append(fixed_image) |
167
|
|
|
|
168
|
|
|
# (batch, m_dim1, m_dim2, m_dim3, 1) |
169
|
|
|
if moving_label is not None: |
170
|
|
|
moving_label = tf.expand_dims(moving_label, axis=4) |
171
|
|
|
moving_label = resize_layer(moving_label) |
172
|
|
|
images.append(moving_label) |
173
|
|
|
|
174
|
|
|
# (batch, f_dim1, f_dim2, f_dim3, 2 or 3) |
175
|
|
|
images = tf.concat(images, axis=4) |
176
|
|
|
return images |
177
|
|
|
|
178
|
|
|
def _build_loss(self, name: str, inputs_dict: dict): |
179
|
|
|
""" |
180
|
|
|
Build and add one weighted loss together with the metrics. |
181
|
|
|
|
182
|
|
|
:param name: name of loss, image / label / regularization. |
183
|
|
|
:param inputs_dict: inputs for loss function |
184
|
|
|
""" |
185
|
|
|
|
186
|
|
|
if name not in self.config["loss"]: |
187
|
|
|
# loss config is not defined |
188
|
|
|
logging.warning( |
189
|
|
|
f"The configuration for loss {name} is not defined. " |
190
|
|
|
f"Therefore it is not used." |
191
|
|
|
) |
192
|
|
|
return |
193
|
|
|
|
194
|
|
|
loss_configs = self.config["loss"][name] |
195
|
|
|
if not isinstance(loss_configs, list): |
196
|
|
|
loss_configs = [loss_configs] |
197
|
|
|
|
198
|
|
|
for loss_config in loss_configs: |
199
|
|
|
|
200
|
|
|
if "weight" not in loss_config: |
201
|
|
|
# default loss weight 1 |
202
|
|
|
logging.warning( |
203
|
|
|
f"The weight for loss {name} is not defined." |
204
|
|
|
f"Default weight = 1.0 is used." |
205
|
|
|
) |
206
|
|
|
loss_config["weight"] = 1.0 |
207
|
|
|
|
208
|
|
|
# build loss |
209
|
|
|
weight = loss_config["weight"] |
210
|
|
|
|
211
|
|
|
if weight == 0: |
212
|
|
|
logging.warning( |
213
|
|
|
f"The weight for loss {name} is zero." f"Loss is not used." |
214
|
|
|
) |
215
|
|
|
return |
216
|
|
|
|
217
|
|
|
loss_layer: tf.keras.layers.Layer = REGISTRY.build_loss( |
218
|
|
|
config=dict_without(d=loss_config, key="weight") |
219
|
|
|
) |
220
|
|
|
loss_value = loss_layer(**inputs_dict) / self.global_batch_size |
221
|
|
|
weighted_loss = loss_value * weight |
222
|
|
|
|
223
|
|
|
# add loss |
224
|
|
|
self._model.add_loss(weighted_loss) |
225
|
|
|
|
226
|
|
|
# add metric |
227
|
|
|
self._model.add_metric( |
228
|
|
|
loss_value, name=f"loss/{name}_{loss_layer.name}", aggregation="mean" |
229
|
|
|
) |
230
|
|
|
self._model.add_metric( |
231
|
|
|
weighted_loss, |
232
|
|
|
name=f"loss/{name}_{loss_layer.name}_weighted", |
233
|
|
|
aggregation="mean", |
234
|
|
|
) |
235
|
|
|
|
236
|
|
|
@abstractmethod |
237
|
|
|
def build_loss(self): |
238
|
|
|
"""Build losses according to configs.""" |
239
|
|
|
|
240
|
|
|
# input metrics |
241
|
|
|
fixed_image = self._inputs["fixed_image"] |
242
|
|
|
moving_image = self._inputs["moving_image"] |
243
|
|
|
self.log_tensor_stats(tensor=moving_image, name="moving_image") |
244
|
|
|
self.log_tensor_stats(tensor=fixed_image, name="fixed_image") |
245
|
|
|
|
246
|
|
|
# image loss, conditional model does not have this |
247
|
|
|
if "pred_fixed_image" in self._outputs: |
248
|
|
|
pred_fixed_image = self._outputs["pred_fixed_image"] |
249
|
|
|
self._build_loss( |
250
|
|
|
name="image", |
251
|
|
|
inputs_dict=dict(y_true=fixed_image, y_pred=pred_fixed_image), |
252
|
|
|
) |
253
|
|
|
|
254
|
|
|
if self.labeled: |
255
|
|
|
# input metrics |
256
|
|
|
fixed_label = self._inputs["fixed_label"] |
257
|
|
|
moving_label = self._inputs["moving_label"] |
258
|
|
|
self.log_tensor_stats(tensor=moving_label, name="moving_label") |
259
|
|
|
self.log_tensor_stats(tensor=fixed_label, name="fixed_label") |
260
|
|
|
|
261
|
|
|
# label loss |
262
|
|
|
pred_fixed_label = self._outputs["pred_fixed_label"] |
263
|
|
|
self._build_loss( |
264
|
|
|
name="label", |
265
|
|
|
inputs_dict=dict(y_true=fixed_label, y_pred=pred_fixed_label), |
266
|
|
|
) |
267
|
|
|
|
268
|
|
|
# additional label metrics |
269
|
|
|
tre = compute_centroid_distance( |
270
|
|
|
y_true=fixed_label, y_pred=pred_fixed_label, grid=self.grid_ref |
271
|
|
|
) |
272
|
|
|
dice_binary = DiceScore(binary=True)( |
273
|
|
|
y_true=fixed_label, y_pred=pred_fixed_label |
274
|
|
|
) |
275
|
|
|
self._model.add_metric(tre, name="metric/TRE", aggregation="mean") |
276
|
|
|
self._model.add_metric( |
277
|
|
|
dice_binary, name="metric/BinaryDiceScore", aggregation="mean" |
278
|
|
|
) |
279
|
|
|
|
280
|
|
|
def call( |
281
|
|
|
self, inputs: Dict[str, tf.Tensor], training=None, mask=None |
282
|
|
|
) -> Dict[str, tf.Tensor]: |
283
|
|
|
""" |
284
|
|
|
Call the self._model. |
285
|
|
|
|
286
|
|
|
:param inputs: a dict of tensors. |
287
|
|
|
:param training: training or not. |
288
|
|
|
:param mask: maks for inputs. |
289
|
|
|
:return: |
290
|
|
|
""" |
291
|
|
|
return self._model(inputs, training=training, mask=mask) # pragma: no cover |
292
|
|
|
|
293
|
|
|
@abstractmethod |
294
|
|
|
def postprocess( |
295
|
|
|
self, |
296
|
|
|
inputs: Dict[str, tf.Tensor], |
297
|
|
|
outputs: Dict[str, tf.Tensor], |
298
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
299
|
|
|
""" |
300
|
|
|
Return a dict used for saving inputs and outputs. |
301
|
|
|
|
302
|
|
|
:param inputs: dict of model inputs |
303
|
|
|
:param outputs: dict of model outputs |
304
|
|
|
:return: tuple, indices and a dict. |
305
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
306
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
307
|
|
|
- on_label = True if the tensor depends on label |
308
|
|
|
""" |
309
|
|
|
|
310
|
|
|
def plot_model(self, output_dir: str): |
311
|
|
|
""" |
312
|
|
|
Save model structure in png. |
313
|
|
|
|
314
|
|
|
:param output_dir: path to the output dir. |
315
|
|
|
""" |
316
|
|
|
logging.info(self._model.summary()) |
317
|
|
|
try: |
318
|
|
|
tf.keras.utils.plot_model( |
319
|
|
|
self._model, |
320
|
|
|
to_file=os.path.join(output_dir, f"{self.name}.png"), |
321
|
|
|
dpi=96, |
322
|
|
|
show_shapes=True, |
323
|
|
|
show_layer_names=True, |
324
|
|
|
expand_nested=False, |
325
|
|
|
) |
326
|
|
|
except ImportError as err: # pragma: no cover |
327
|
|
|
logging.error( |
328
|
|
|
"Failed to plot model structure." |
329
|
|
|
"Please check if graphviz is installed.\n" |
330
|
|
|
"Error message is:" |
331
|
|
|
f"{err}" |
332
|
|
|
) |
333
|
|
|
|
334
|
|
|
def log_tensor_stats(self, tensor: tf.Tensor, name: str): |
335
|
|
|
""" |
336
|
|
|
Log statistics of a given tensor. |
337
|
|
|
|
338
|
|
|
:param tensor: tensor to monitor. |
339
|
|
|
:param name: name of the tensor. |
340
|
|
|
""" |
341
|
|
|
flatten = tf.reshape(tensor, shape=(self.batch_size, -1)) |
342
|
|
|
self._model.add_metric( |
343
|
|
|
tf.reduce_mean(flatten, axis=1), |
344
|
|
|
name=f"metric/{name}_mean", |
345
|
|
|
aggregation="mean", |
346
|
|
|
) |
347
|
|
|
self._model.add_metric( |
348
|
|
|
tf.reduce_min(flatten, axis=1), |
349
|
|
|
name=f"metric/{name}_min", |
350
|
|
|
aggregation="min", |
351
|
|
|
) |
352
|
|
|
self._model.add_metric( |
353
|
|
|
tf.reduce_max(flatten, axis=1), |
354
|
|
|
name=f"metric/{name}_max", |
355
|
|
|
aggregation="max", |
356
|
|
|
) |
357
|
|
|
|
358
|
|
|
|
359
|
|
|
@REGISTRY.register_model(name="ddf") |
360
|
|
|
class DDFModel(RegistrationModel): |
361
|
|
|
""" |
362
|
|
|
A registration model predicts DDF. |
363
|
|
|
|
364
|
|
|
When using global net as backbone, |
365
|
|
|
the model predicts an affine transformation parameters, |
366
|
|
|
and a DDF is calculated based on that. |
367
|
|
|
""" |
368
|
|
|
|
369
|
|
|
name = "DDFModel" |
370
|
|
|
|
371
|
|
|
def _resize_interpolate(self, field, control_points): |
372
|
|
|
resize = layer.ResizeCPTransform(control_points) |
373
|
|
|
field = resize(field) |
374
|
|
|
|
375
|
|
|
interpolate = layer.BSplines3DTransform(control_points, self.fixed_image_size) |
376
|
|
|
field = interpolate(field) |
377
|
|
|
|
378
|
|
|
return field |
379
|
|
|
|
380
|
|
|
def build_model(self): |
381
|
|
|
"""Build the model to be saved as self._model.""" |
382
|
|
|
# build inputs |
383
|
|
|
self._inputs = self.build_inputs() |
384
|
|
|
moving_image = self._inputs["moving_image"] |
385
|
|
|
fixed_image = self._inputs["fixed_image"] |
386
|
|
|
|
387
|
|
|
# build ddf |
388
|
|
|
control_points = self.config["backbone"].pop("control_points", False) |
389
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image) |
390
|
|
|
backbone = REGISTRY.build_backbone( |
391
|
|
|
config=self.config["backbone"], |
392
|
|
|
default_args=dict( |
393
|
|
|
image_size=self.fixed_image_size, |
394
|
|
|
out_channels=3, |
395
|
|
|
out_kernel_initializer="zeros", |
396
|
|
|
out_activation=None, |
397
|
|
|
), |
398
|
|
|
) |
399
|
|
|
|
400
|
|
|
if isinstance(backbone, GlobalNet): |
401
|
|
|
# (f_dim1, f_dim2, f_dim3, 3), (4, 3) |
402
|
|
|
ddf, theta = backbone(inputs=backbone_inputs) |
403
|
|
|
self._outputs = dict(ddf=ddf, theta=theta) |
404
|
|
|
else: |
405
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
406
|
|
|
ddf = backbone(inputs=backbone_inputs) |
407
|
|
|
ddf = ( |
408
|
|
|
self._resize_interpolate(ddf, control_points) if control_points else ddf |
409
|
|
|
) |
410
|
|
|
self._outputs = dict(ddf=ddf) |
411
|
|
|
|
412
|
|
|
# build outputs |
413
|
|
|
warping = layer.Warping(fixed_image_size=self.fixed_image_size) |
414
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
415
|
|
|
pred_fixed_image = warping(inputs=[ddf, moving_image]) |
416
|
|
|
self._outputs["pred_fixed_image"] = pred_fixed_image |
417
|
|
|
|
418
|
|
|
if not self.labeled: |
419
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
420
|
|
|
|
421
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
422
|
|
|
moving_label = self._inputs["moving_label"] |
423
|
|
|
pred_fixed_label = warping(inputs=[ddf, moving_label]) |
424
|
|
|
|
425
|
|
|
self._outputs["pred_fixed_label"] = pred_fixed_label |
426
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
427
|
|
|
|
428
|
|
|
def build_loss(self): |
429
|
|
|
"""Build losses according to configs.""" |
430
|
|
|
super().build_loss() |
431
|
|
|
|
432
|
|
|
# ddf loss and metrics |
433
|
|
|
ddf = self._outputs["ddf"] |
434
|
|
|
self._build_loss(name="regularization", inputs_dict=dict(inputs=ddf)) |
435
|
|
|
self.log_tensor_stats(tensor=ddf, name="ddf") |
436
|
|
|
|
437
|
|
|
def postprocess( |
438
|
|
|
self, |
439
|
|
|
inputs: Dict[str, tf.Tensor], |
440
|
|
|
outputs: Dict[str, tf.Tensor], |
441
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
442
|
|
|
""" |
443
|
|
|
Return a dict used for saving inputs and outputs. |
444
|
|
|
|
445
|
|
|
:param inputs: dict of model inputs |
446
|
|
|
:param outputs: dict of model outputs |
447
|
|
|
:return: tuple, indices and a dict. |
448
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
449
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
450
|
|
|
- on_label = True if the tensor depends on label |
451
|
|
|
""" |
452
|
|
|
indices = inputs["indices"] |
453
|
|
|
processed = dict( |
454
|
|
|
moving_image=(inputs["moving_image"], True, False), |
455
|
|
|
fixed_image=(inputs["fixed_image"], True, False), |
456
|
|
|
ddf=(outputs["ddf"], True, False), |
457
|
|
|
pred_fixed_image=(outputs["pred_fixed_image"], True, False), |
458
|
|
|
) |
459
|
|
|
|
460
|
|
|
# save theta for affine model |
461
|
|
|
if "theta" in outputs: |
462
|
|
|
processed["theta"] = (outputs["theta"], None, None) # type: ignore |
463
|
|
|
|
464
|
|
|
if not self.labeled: |
465
|
|
|
return indices, processed |
466
|
|
|
|
467
|
|
|
processed = { |
468
|
|
|
**dict( |
469
|
|
|
moving_label=(inputs["moving_label"], False, True), |
470
|
|
|
fixed_label=(inputs["fixed_label"], False, True), |
471
|
|
|
pred_fixed_label=(outputs["pred_fixed_label"], False, True), |
472
|
|
|
), |
473
|
|
|
**processed, |
474
|
|
|
} |
475
|
|
|
|
476
|
|
|
return indices, processed |
477
|
|
|
|
478
|
|
|
|
479
|
|
|
@REGISTRY.register_model(name="dvf") |
480
|
|
|
class DVFModel(DDFModel): |
481
|
|
|
""" |
482
|
|
|
A registration model predicts DVF. |
483
|
|
|
|
484
|
|
|
DDF is calculated based on DVF. |
485
|
|
|
""" |
486
|
|
|
|
487
|
|
|
name = "DVFModel" |
488
|
|
|
|
489
|
|
|
def build_model(self): |
490
|
|
|
"""Build the model to be saved as self._model.""" |
491
|
|
|
# build inputs |
492
|
|
|
self._inputs = self.build_inputs() |
493
|
|
|
moving_image = self._inputs["moving_image"] |
494
|
|
|
fixed_image = self._inputs["fixed_image"] |
495
|
|
|
control_points = self.config["backbone"].pop("control_points", False) |
496
|
|
|
|
497
|
|
|
# build ddf |
498
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image) |
499
|
|
|
backbone = REGISTRY.build_backbone( |
500
|
|
|
config=self.config["backbone"], |
501
|
|
|
default_args=dict( |
502
|
|
|
image_size=self.fixed_image_size, |
503
|
|
|
out_channels=3, |
504
|
|
|
out_kernel_initializer="zeros", |
505
|
|
|
out_activation=None, |
506
|
|
|
), |
507
|
|
|
) |
508
|
|
|
dvf = backbone(inputs=backbone_inputs) |
509
|
|
|
dvf = self._resize_interpolate(dvf, control_points) if control_points else dvf |
510
|
|
|
ddf = layer.IntDVF(fixed_image_size=self.fixed_image_size)(dvf) |
511
|
|
|
|
512
|
|
|
# build outputs |
513
|
|
|
self._warping = layer.Warping(fixed_image_size=self.fixed_image_size) |
514
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
515
|
|
|
pred_fixed_image = self._warping(inputs=[ddf, moving_image]) |
516
|
|
|
|
517
|
|
|
self._outputs = dict(dvf=dvf, ddf=ddf, pred_fixed_image=pred_fixed_image) |
518
|
|
|
|
519
|
|
|
if not self.labeled: |
520
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
521
|
|
|
|
522
|
|
|
# (f_dim1, f_dim2, f_dim3, 3) |
523
|
|
|
moving_label = self._inputs["moving_label"] |
524
|
|
|
pred_fixed_label = self._warping(inputs=[ddf, moving_label]) |
525
|
|
|
|
526
|
|
|
self._outputs["pred_fixed_label"] = pred_fixed_label |
527
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
528
|
|
|
|
529
|
|
|
def build_loss(self): |
530
|
|
|
"""Build losses according to configs.""" |
531
|
|
|
super().build_loss() |
532
|
|
|
|
533
|
|
|
# dvf metrics |
534
|
|
|
dvf = self._outputs["dvf"] |
535
|
|
|
self.log_tensor_stats(tensor=dvf, name="dvf") |
536
|
|
|
|
537
|
|
|
def postprocess( |
538
|
|
|
self, |
539
|
|
|
inputs: Dict[str, tf.Tensor], |
540
|
|
|
outputs: Dict[str, tf.Tensor], |
541
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
542
|
|
|
""" |
543
|
|
|
Return a dict used for saving inputs and outputs. |
544
|
|
|
|
545
|
|
|
:param inputs: dict of model inputs |
546
|
|
|
:param outputs: dict of model outputs |
547
|
|
|
:return: tuple, indices and a dict. |
548
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
549
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
550
|
|
|
- on_label = True if the tensor depends on label |
551
|
|
|
""" |
552
|
|
|
indices, processed = super().postprocess(inputs=inputs, outputs=outputs) |
553
|
|
|
processed["dvf"] = (outputs["dvf"], True, False) |
554
|
|
|
return indices, processed |
555
|
|
|
|
556
|
|
|
|
557
|
|
|
@REGISTRY.register_model(name="conditional") |
558
|
|
|
class ConditionalModel(RegistrationModel): |
559
|
|
|
""" |
560
|
|
|
A registration model predicts fixed image label without DDF or DVF. |
561
|
|
|
""" |
562
|
|
|
|
563
|
|
|
name = "ConditionalModel" |
564
|
|
|
|
565
|
|
|
def build_model(self): |
566
|
|
|
"""Build the model to be saved as self._model.""" |
567
|
|
|
assert self.labeled |
568
|
|
|
|
569
|
|
|
# build inputs |
570
|
|
|
self._inputs = self.build_inputs() |
571
|
|
|
moving_image = self._inputs["moving_image"] |
572
|
|
|
fixed_image = self._inputs["fixed_image"] |
573
|
|
|
moving_label = self._inputs["moving_label"] |
574
|
|
|
|
575
|
|
|
# build ddf |
576
|
|
|
backbone_inputs = self.concat_images(moving_image, fixed_image, moving_label) |
577
|
|
|
backbone = REGISTRY.build_backbone( |
578
|
|
|
config=self.config["backbone"], |
579
|
|
|
default_args=dict( |
580
|
|
|
image_size=self.fixed_image_size, |
581
|
|
|
out_channels=1, |
582
|
|
|
out_kernel_initializer="glorot_uniform", |
583
|
|
|
out_activation="sigmoid", |
584
|
|
|
), |
585
|
|
|
) |
586
|
|
|
# (batch, f_dim1, f_dim2, f_dim3) |
587
|
|
|
pred_fixed_label = backbone(inputs=backbone_inputs) |
588
|
|
|
pred_fixed_label = tf.squeeze(pred_fixed_label, axis=4) |
589
|
|
|
|
590
|
|
|
self._outputs = dict(pred_fixed_label=pred_fixed_label) |
591
|
|
|
return tf.keras.Model(inputs=self._inputs, outputs=self._outputs) |
592
|
|
|
|
593
|
|
|
def postprocess( |
594
|
|
|
self, |
595
|
|
|
inputs: Dict[str, tf.Tensor], |
596
|
|
|
outputs: Dict[str, tf.Tensor], |
597
|
|
|
) -> Tuple[tf.Tensor, Dict]: |
598
|
|
|
""" |
599
|
|
|
Return a dict used for saving inputs and outputs. |
600
|
|
|
|
601
|
|
|
:param inputs: dict of model inputs |
602
|
|
|
:param outputs: dict of model outputs |
603
|
|
|
:return: tuple, indices and a dict. |
604
|
|
|
In the dict, each value is (tensor, normalize, on_label), where |
605
|
|
|
- normalize = True if the tensor need to be normalized to [0, 1] |
606
|
|
|
- on_label = True if the tensor depends on label |
607
|
|
|
""" |
608
|
|
|
indices = inputs["indices"] |
609
|
|
|
processed = dict( |
610
|
|
|
moving_image=(inputs["moving_image"], True, False), |
611
|
|
|
fixed_image=(inputs["fixed_image"], True, False), |
612
|
|
|
pred_fixed_label=(outputs["pred_fixed_label"], True, True), |
613
|
|
|
moving_label=(inputs["moving_label"], False, True), |
614
|
|
|
fixed_label=(inputs["fixed_label"], False, True), |
615
|
|
|
) |
616
|
|
|
|
617
|
|
|
return indices, processed |
618
|
|
|
|