1
|
|
|
# coding=utf-8 |
2
|
|
|
|
3
|
|
|
""" |
4
|
|
|
Tests for deepreg/dataset/loader/interface.py |
5
|
|
|
""" |
6
|
|
|
from test.unit.util import is_equal_np |
7
|
|
|
from typing import Optional, Tuple |
8
|
|
|
|
9
|
|
|
import numpy as np |
10
|
|
|
import pytest |
11
|
|
|
|
12
|
|
|
from deepreg.dataset.loader.interface import ( |
13
|
|
|
AbstractPairedDataLoader, |
14
|
|
|
AbstractUnpairedDataLoader, |
15
|
|
|
DataLoader, |
16
|
|
|
FileLoader, |
17
|
|
|
GeneratorDataLoader, |
18
|
|
|
) |
19
|
|
|
from deepreg.dataset.loader.nifti_loader import NiftiFileLoader |
20
|
|
|
from deepreg.dataset.loader.paired_loader import PairedDataLoader |
21
|
|
|
from deepreg.dataset.loader.util import normalize_array |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
class TestDataLoader: |
25
|
|
|
@pytest.mark.parametrize( |
26
|
|
|
"labeled,num_indices,sample_label,seed", |
27
|
|
|
[ |
28
|
|
|
(True, 1, "all", 0), |
29
|
|
|
(False, 1, "all", 0), |
30
|
|
|
(None, 1, "all", 0), |
31
|
|
|
(True, 1, "sample", 0), |
32
|
|
|
(True, 1, "all", 0), |
33
|
|
|
(True, 1, None, 0), |
34
|
|
|
(True, 1, "sample", None), |
35
|
|
|
], |
36
|
|
|
) |
37
|
|
|
def test_init(self, labeled, num_indices, sample_label, seed): |
38
|
|
|
""" |
39
|
|
|
Test init function of DataLoader class |
40
|
|
|
:param labeled: bool |
41
|
|
|
:param num_indices: int |
42
|
|
|
:param sample_label: str |
43
|
|
|
:param seed: float/int/None |
44
|
|
|
:return: |
45
|
|
|
""" |
46
|
|
|
DataLoader( |
47
|
|
|
labeled=labeled, |
48
|
|
|
num_indices=num_indices, |
49
|
|
|
sample_label=sample_label, |
50
|
|
|
seed=seed, |
51
|
|
|
) |
52
|
|
|
|
53
|
|
|
data_loader = DataLoader( |
54
|
|
|
labeled=labeled, |
55
|
|
|
num_indices=num_indices, |
56
|
|
|
sample_label=sample_label, |
57
|
|
|
seed=seed, |
58
|
|
|
) |
59
|
|
|
|
60
|
|
|
with pytest.raises(NotImplementedError): |
61
|
|
|
data_loader.moving_image_shape |
62
|
|
|
with pytest.raises(NotImplementedError): |
63
|
|
|
data_loader.fixed_image_shape |
64
|
|
|
with pytest.raises(NotImplementedError): |
65
|
|
|
data_loader.num_samples |
66
|
|
|
with pytest.raises(NotImplementedError): |
67
|
|
|
data_loader.get_dataset() |
68
|
|
|
|
69
|
|
|
data_loader.close() |
70
|
|
|
|
71
|
|
|
@pytest.mark.parametrize( |
72
|
|
|
"labeled,moving_shape,fixed_shape,batch_size,data_augmentation", |
73
|
|
|
[ |
74
|
|
|
(True, (9, 9, 9), (9, 9, 9), 1, {}), |
75
|
|
|
( |
76
|
|
|
True, |
77
|
|
|
(9, 9, 9), |
78
|
|
|
(15, 15, 15), |
79
|
|
|
1, |
80
|
|
|
{"data_augmentation": {"name": "affine"}}, |
81
|
|
|
), |
82
|
|
|
( |
83
|
|
|
True, |
84
|
|
|
(9, 9, 9), |
85
|
|
|
(15, 15, 15), |
86
|
|
|
1, |
87
|
|
|
{ |
88
|
|
|
"data_augmentation": [ |
89
|
|
|
{"name": "affine"}, |
90
|
|
|
{ |
91
|
|
|
"name": "ddf", |
92
|
|
|
"field_strength": 1, |
93
|
|
|
"low_res_size": (3, 3, 3), |
94
|
|
|
}, |
95
|
|
|
], |
96
|
|
|
}, |
97
|
|
|
), |
98
|
|
|
], |
99
|
|
|
) |
100
|
|
|
def test_get_dataset_and_preprocess( |
101
|
|
|
self, labeled, moving_shape, fixed_shape, batch_size, data_augmentation |
102
|
|
|
): |
103
|
|
|
""" |
104
|
|
|
Test get_transforms() function. For that, an Abstract Data Loader is created |
105
|
|
|
only to set the moving and fixed shapes that are used in get_transforms(). |
106
|
|
|
Here we test that the get_transform() returns a function and the shape of |
107
|
|
|
the output of this function. See test_preprocess.py for more testing regarding |
108
|
|
|
the concrete params. |
109
|
|
|
|
110
|
|
|
:param labeled: bool |
111
|
|
|
:param moving_shape: tuple |
112
|
|
|
:param fixed_shape: tuple |
113
|
|
|
:param batch_size: total number of samples consumed per step, over all devices. |
114
|
|
|
:param data_augmentation: dict |
115
|
|
|
:return: |
116
|
|
|
""" |
117
|
|
|
data_dir_path = [ |
118
|
|
|
"data/test/nifti/paired/train", |
119
|
|
|
"data/test/nifti/paired/test", |
120
|
|
|
] |
121
|
|
|
common_args = dict( |
122
|
|
|
file_loader=NiftiFileLoader, labeled=True, sample_label="all", seed=None |
123
|
|
|
) |
124
|
|
|
|
125
|
|
|
data_loader = PairedDataLoader( |
126
|
|
|
data_dir_paths=data_dir_path, |
127
|
|
|
fixed_image_shape=fixed_shape, |
128
|
|
|
moving_image_shape=moving_shape, |
129
|
|
|
**common_args, |
130
|
|
|
) |
131
|
|
|
|
132
|
|
|
dataset = data_loader.get_dataset_and_preprocess( |
133
|
|
|
training=True, |
134
|
|
|
batch_size=batch_size, |
135
|
|
|
repeat=True, |
136
|
|
|
shuffle_buffer_num_batch=1, |
137
|
|
|
**data_augmentation, |
138
|
|
|
) |
139
|
|
|
|
140
|
|
|
for outputs in dataset.take(1): |
141
|
|
|
assert ( |
142
|
|
|
outputs["moving_image"].shape |
143
|
|
|
== (batch_size,) + data_loader.moving_image_shape |
144
|
|
|
) |
145
|
|
|
assert ( |
146
|
|
|
outputs["fixed_image"].shape |
147
|
|
|
== (batch_size,) + data_loader.fixed_image_shape |
148
|
|
|
) |
149
|
|
|
assert ( |
150
|
|
|
outputs["moving_label"].shape |
151
|
|
|
== (batch_size,) + data_loader.moving_image_shape |
152
|
|
|
) |
153
|
|
|
assert ( |
154
|
|
|
outputs["fixed_label"].shape |
155
|
|
|
== (batch_size,) + data_loader.fixed_image_shape |
156
|
|
|
) |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
def test_abstract_paired_data_loader(): |
160
|
|
|
""" |
161
|
|
|
Test the functions in AbstractPairedDataLoader |
162
|
|
|
""" |
163
|
|
|
moving_image_shape = (8, 8, 4) |
164
|
|
|
fixed_image_shape = (6, 6, 4) |
165
|
|
|
|
166
|
|
|
# test init invalid shape |
167
|
|
|
with pytest.raises(ValueError) as err_info: |
168
|
|
|
AbstractPairedDataLoader( |
169
|
|
|
moving_image_shape=(2, 2), |
170
|
|
|
fixed_image_shape=(3, 3), |
171
|
|
|
labeled=True, |
172
|
|
|
sample_label="sample", |
173
|
|
|
) |
174
|
|
|
assert "moving_image_shape and fixed_image_shape have length of three" in str( |
175
|
|
|
err_info.value |
176
|
|
|
) |
177
|
|
|
|
178
|
|
|
# test init valid shapes |
179
|
|
|
data_loader = AbstractPairedDataLoader( |
180
|
|
|
moving_image_shape=moving_image_shape, |
181
|
|
|
fixed_image_shape=fixed_image_shape, |
182
|
|
|
labeled=True, |
183
|
|
|
sample_label="sample", |
184
|
|
|
) |
185
|
|
|
|
186
|
|
|
# test properties |
187
|
|
|
assert data_loader.num_indices == 2 |
188
|
|
|
assert data_loader.moving_image_shape == moving_image_shape |
189
|
|
|
assert data_loader.fixed_image_shape == fixed_image_shape |
190
|
|
|
assert data_loader.num_samples is None |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def test_abstract_unpaired_data_loader(): |
194
|
|
|
""" |
195
|
|
|
Test the functions in AbstractUnpairedDataLoader |
196
|
|
|
""" |
197
|
|
|
image_shape = (8, 8, 4) |
198
|
|
|
|
199
|
|
|
# test init invalid shape |
200
|
|
|
with pytest.raises(ValueError) as err_info: |
201
|
|
|
AbstractUnpairedDataLoader( |
202
|
|
|
image_shape=(2, 2), labeled=True, sample_label="sample" |
203
|
|
|
) |
204
|
|
|
assert "image_shape has to be length of three" in str(err_info.value) |
205
|
|
|
|
206
|
|
|
# test init valid shapes |
207
|
|
|
data_loader = AbstractUnpairedDataLoader( |
208
|
|
|
image_shape=image_shape, labeled=True, sample_label="sample" |
209
|
|
|
) |
210
|
|
|
|
211
|
|
|
# test properties |
212
|
|
|
assert data_loader.num_indices == 3 |
213
|
|
|
assert data_loader.moving_image_shape == image_shape |
214
|
|
|
assert data_loader.fixed_image_shape == image_shape |
215
|
|
|
assert data_loader.num_samples is None |
216
|
|
|
|
217
|
|
|
|
218
|
|
|
def get_arr(shape: Tuple = (2, 3, 4), seed: Optional[int] = None) -> np.ndarray: |
219
|
|
|
""" |
220
|
|
|
Return a random array. |
221
|
|
|
|
222
|
|
|
:param shape: shape of array. |
223
|
|
|
:param seed: random seed. |
224
|
|
|
:return: random array. |
225
|
|
|
""" |
226
|
|
|
np.random.seed(seed) |
227
|
|
|
return np.random.random(size=shape).astype(np.float32) |
228
|
|
|
|
229
|
|
|
|
230
|
|
|
class TestGeneratorDataLoader: |
231
|
|
|
@pytest.mark.parametrize("labeled", [True, False]) |
232
|
|
|
def test_get_labeled_dataset(self, labeled: bool): |
233
|
|
|
""" |
234
|
|
|
Test get_dataset with data loader. |
235
|
|
|
|
236
|
|
|
:param labeled: labeled data or not. |
237
|
|
|
""" |
238
|
|
|
sample = { |
239
|
|
|
"moving_image": get_arr(), |
240
|
|
|
"fixed_image": get_arr(), |
241
|
|
|
"indices": [1], |
242
|
|
|
} |
243
|
|
|
if labeled: |
244
|
|
|
sample = { |
245
|
|
|
"moving_label": get_arr(), |
246
|
|
|
"fixed_label": get_arr(), |
247
|
|
|
**sample, |
248
|
|
|
} |
249
|
|
|
|
250
|
|
|
def mock_gen(): |
251
|
|
|
"""Toy data generator.""" |
252
|
|
|
for _ in range(3): |
253
|
|
|
yield sample |
254
|
|
|
|
255
|
|
|
loader = GeneratorDataLoader(labeled=labeled, num_indices=1, sample_label="all") |
256
|
|
|
loader.__setattr__("data_generator", mock_gen) |
257
|
|
|
dataset = loader.get_dataset() |
258
|
|
|
for got in dataset.as_numpy_iterator(): |
259
|
|
|
assert all(is_equal_np(got[key], sample[key]) for key in sample.keys()) |
260
|
|
|
|
261
|
|
|
@pytest.mark.parametrize("labeled", [True, False]) |
262
|
|
|
def test_data_generator(self, labeled: bool): |
263
|
|
|
""" |
264
|
|
|
Test data_generator() |
265
|
|
|
|
266
|
|
|
:param labeled: labeled data or not. |
267
|
|
|
""" |
268
|
|
|
|
269
|
|
|
class MockDataLoader: |
270
|
|
|
"""Toy data loader.""" |
271
|
|
|
|
272
|
|
|
def __init__(self, seed: int): |
273
|
|
|
""" |
274
|
|
|
Init. |
275
|
|
|
|
276
|
|
|
:param seed: random seed for numpy. |
277
|
|
|
:param kwargs: additional arguments. |
278
|
|
|
""" |
279
|
|
|
self.seed = seed |
280
|
|
|
|
281
|
|
|
def get_data(self, index: int) -> np.ndarray: |
282
|
|
|
""" |
283
|
|
|
Return the dummy array despite of the index. |
284
|
|
|
|
285
|
|
|
:param index: not used |
286
|
|
|
:return: dummy array. |
287
|
|
|
""" |
288
|
|
|
assert isinstance(index, int) |
289
|
|
|
return get_arr(seed=self.seed) |
290
|
|
|
|
291
|
|
|
def mock_sample_index_generator(): |
292
|
|
|
"""Toy sample index generator.""" |
293
|
|
|
return [[1, 1, [1]]] |
294
|
|
|
|
295
|
|
|
loader = GeneratorDataLoader(labeled=labeled, num_indices=1, sample_label="all") |
296
|
|
|
loader.__setattr__("sample_index_generator", mock_sample_index_generator) |
297
|
|
|
loader.loader_moving_image = MockDataLoader(seed=0) |
298
|
|
|
loader.loader_fixed_image = MockDataLoader(seed=1) |
299
|
|
|
if labeled: |
300
|
|
|
loader.loader_moving_label = MockDataLoader(seed=2) |
301
|
|
|
loader.loader_fixed_label = MockDataLoader(seed=3) |
302
|
|
|
|
303
|
|
|
# check data loader output |
304
|
|
|
got = next(loader.data_generator()) |
305
|
|
|
|
306
|
|
|
expected = { |
307
|
|
|
"moving_image": normalize_array(get_arr(seed=0)), |
308
|
|
|
"fixed_image": normalize_array(get_arr(seed=1)), |
309
|
|
|
# 0 or -1 is the label index |
310
|
|
|
"indices": np.array([1, 0] if labeled else [1, -1], dtype=np.float32), |
311
|
|
|
} |
312
|
|
|
if labeled: |
313
|
|
|
expected = { |
314
|
|
|
"moving_label": get_arr(seed=2), |
315
|
|
|
"fixed_label": get_arr(seed=3), |
316
|
|
|
**expected, |
317
|
|
|
} |
318
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
319
|
|
|
|
320
|
|
|
def test_sample_index_generator(self): |
321
|
|
|
loader = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
322
|
|
|
with pytest.raises(NotImplementedError): |
323
|
|
|
loader.sample_index_generator() |
324
|
|
|
|
325
|
|
|
@pytest.mark.parametrize( |
326
|
|
|
( |
327
|
|
|
"moving_image_shape", |
328
|
|
|
"fixed_image_shape", |
329
|
|
|
"moving_label_shape", |
330
|
|
|
"fixed_label_shape", |
331
|
|
|
"err_msg", |
332
|
|
|
), |
333
|
|
|
[ |
334
|
|
|
( |
335
|
|
|
None, |
336
|
|
|
(10, 10, 10), |
337
|
|
|
(10, 10, 10), |
338
|
|
|
(10, 10, 10), |
339
|
|
|
"moving image and fixed image must not be None", |
340
|
|
|
), |
341
|
|
|
( |
342
|
|
|
(10, 10, 10), |
343
|
|
|
None, |
344
|
|
|
(10, 10, 10), |
345
|
|
|
(10, 10, 10), |
346
|
|
|
"moving image and fixed image must not be None", |
347
|
|
|
), |
348
|
|
|
( |
349
|
|
|
(10, 10, 10), |
350
|
|
|
(10, 10, 10), |
351
|
|
|
None, |
352
|
|
|
(10, 10, 10), |
353
|
|
|
"moving label and fixed label must be both None or non-None", |
354
|
|
|
), |
355
|
|
|
( |
356
|
|
|
(10, 10, 10), |
357
|
|
|
(10, 10, 10), |
358
|
|
|
(10, 10, 10), |
359
|
|
|
None, |
360
|
|
|
"moving label and fixed label must be both None or non-None", |
361
|
|
|
), |
362
|
|
|
( |
363
|
|
|
(10, 10), |
364
|
|
|
(10, 10, 10), |
365
|
|
|
(10, 10, 10), |
366
|
|
|
(10, 10, 10), |
367
|
|
|
"Sample [1]'s moving_image's shape should be 3D", |
368
|
|
|
), |
369
|
|
|
( |
370
|
|
|
(10, 10, 10), |
371
|
|
|
(10, 10), |
372
|
|
|
(10, 10, 10), |
373
|
|
|
(10, 10, 10), |
374
|
|
|
"Sample [1]'s fixed_image's shape should be 3D", |
375
|
|
|
), |
376
|
|
|
( |
377
|
|
|
(10, 10, 10), |
378
|
|
|
(10, 10, 10), |
379
|
|
|
(10, 10), |
380
|
|
|
(10, 10, 10), |
381
|
|
|
"Sample [1]'s moving_label's shape should be 3D or 4D.", |
382
|
|
|
), |
383
|
|
|
( |
384
|
|
|
(10, 10, 10), |
385
|
|
|
(10, 10, 10), |
386
|
|
|
(10, 10, 10), |
387
|
|
|
(10, 10), |
388
|
|
|
"Sample [1]'s fixed_label's shape should be 3D or 4D.", |
389
|
|
|
), |
390
|
|
|
( |
391
|
|
|
(10, 10, 10), |
392
|
|
|
(10, 10, 10), |
393
|
|
|
(10, 10, 10, 2), |
394
|
|
|
(10, 10, 10, 3), |
395
|
|
|
"Sample [1]'s moving image and fixed image " |
396
|
|
|
"have different numbers of labels.", |
397
|
|
|
), |
398
|
|
|
], |
399
|
|
|
) |
400
|
|
|
def test_validate_images_and_labels( |
401
|
|
|
self, |
402
|
|
|
moving_image_shape: Optional[Tuple], |
403
|
|
|
fixed_image_shape: Optional[Tuple], |
404
|
|
|
moving_label_shape: Optional[Tuple], |
405
|
|
|
fixed_label_shape: Optional[Tuple], |
406
|
|
|
err_msg: str, |
407
|
|
|
): |
408
|
|
|
""" |
409
|
|
|
Test error messages. |
410
|
|
|
|
411
|
|
|
:param moving_image_shape: None or tuple. |
412
|
|
|
:param fixed_image_shape: None or tuple. |
413
|
|
|
:param moving_label_shape: None or tuple. |
414
|
|
|
:param fixed_label_shape: None or tuple. |
415
|
|
|
:param err_msg: message. |
416
|
|
|
""" |
417
|
|
|
moving_image = None |
418
|
|
|
fixed_image = None |
419
|
|
|
moving_label = None |
420
|
|
|
fixed_label = None |
421
|
|
|
if moving_image_shape: |
422
|
|
|
moving_image = get_arr(shape=moving_image_shape) |
423
|
|
|
if fixed_image_shape: |
424
|
|
|
fixed_image = get_arr(shape=fixed_image_shape) |
425
|
|
|
if moving_label_shape: |
426
|
|
|
moving_label = get_arr(shape=moving_label_shape) |
427
|
|
|
if fixed_label_shape: |
428
|
|
|
fixed_label = get_arr(shape=fixed_label_shape) |
429
|
|
|
loader = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
430
|
|
|
with pytest.raises(ValueError) as err_info: |
431
|
|
|
loader.validate_images_and_labels( |
432
|
|
|
moving_image=moving_image, |
433
|
|
|
fixed_image=fixed_image, |
434
|
|
|
moving_label=moving_label, |
435
|
|
|
fixed_label=fixed_label, |
436
|
|
|
image_indices=[1], |
437
|
|
|
) |
438
|
|
|
assert err_msg in str(err_info.value) |
439
|
|
|
|
440
|
|
|
@pytest.mark.parametrize("option", [0, 1, 2, 3]) |
441
|
|
|
def test_validate_images_and_labels_range(self, option: int): |
442
|
|
|
""" |
443
|
|
|
Test error messages related to input range. |
444
|
|
|
|
445
|
|
|
:param option: control which image to modify |
446
|
|
|
""" |
447
|
|
|
option_to_name = { |
448
|
|
|
0: "moving_image", |
449
|
|
|
1: "fixed_image", |
450
|
|
|
2: "moving_label", |
451
|
|
|
3: "fixed_label", |
452
|
|
|
} |
453
|
|
|
input = { |
454
|
|
|
"moving_image": get_arr(), |
455
|
|
|
"fixed_image": get_arr(), |
456
|
|
|
"moving_label": get_arr(), |
457
|
|
|
"fixed_label": get_arr(), |
458
|
|
|
} |
459
|
|
|
name = option_to_name[option] |
460
|
|
|
input[name] += 1 |
461
|
|
|
err_msg = f"Sample [1]'s {name}'s values are not between [0, 1]" |
462
|
|
|
|
463
|
|
|
loader = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
464
|
|
|
with pytest.raises(ValueError) as err_info: |
465
|
|
|
loader.validate_images_and_labels( |
466
|
|
|
image_indices=[1], |
467
|
|
|
**input, |
468
|
|
|
) |
469
|
|
|
assert err_msg in str(err_info.value) |
470
|
|
|
|
471
|
|
|
def test_sample_image_label_unlabeled(self): |
472
|
|
|
"""Test sample_image_label in unlabeled case.""" |
473
|
|
|
loader = GeneratorDataLoader(labeled=False, num_indices=1, sample_label="all") |
474
|
|
|
got = next( |
475
|
|
|
loader.sample_image_label( |
476
|
|
|
moving_image=get_arr(seed=0), |
477
|
|
|
fixed_image=get_arr(seed=1), |
478
|
|
|
moving_label=None, |
479
|
|
|
fixed_label=None, |
480
|
|
|
image_indices=[1], |
481
|
|
|
) |
482
|
|
|
) |
483
|
|
|
expected = dict( |
484
|
|
|
moving_image=get_arr(seed=0), |
485
|
|
|
fixed_image=get_arr(seed=1), |
486
|
|
|
indices=np.asarray([1, -1], dtype=np.float32), |
487
|
|
|
) |
488
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
489
|
|
|
|
490
|
|
|
@pytest.mark.parametrize("shape", [(2, 3, 4), (2, 3, 4, 1)]) |
491
|
|
|
def test_sample_image_label_one_label(self, shape: Tuple): |
492
|
|
|
""" |
493
|
|
|
Test sample_image_label in labeled case with one label. |
494
|
|
|
|
495
|
|
|
:param shape: shape of the label. |
496
|
|
|
""" |
497
|
|
|
loader = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
498
|
|
|
got = next( |
499
|
|
|
loader.sample_image_label( |
500
|
|
|
moving_image=get_arr(shape=shape[:3], seed=0), |
501
|
|
|
fixed_image=get_arr(shape=shape[:3], seed=1), |
502
|
|
|
moving_label=get_arr(shape=shape, seed=2), |
503
|
|
|
fixed_label=get_arr(shape=shape, seed=3), |
504
|
|
|
image_indices=[1], |
505
|
|
|
) |
506
|
|
|
) |
507
|
|
|
expected = dict( |
508
|
|
|
moving_image=get_arr(shape=shape[:3], seed=0), |
509
|
|
|
fixed_image=get_arr(shape=shape[:3], seed=1), |
510
|
|
|
moving_label=get_arr(shape=shape[:3], seed=2), |
511
|
|
|
fixed_label=get_arr(shape=shape[:3], seed=3), |
512
|
|
|
indices=np.asarray([1, 0], dtype=np.float32), |
513
|
|
|
) |
514
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
515
|
|
|
|
516
|
|
|
def test_sample_image_label_multiple_labels(self): |
517
|
|
|
"""Test sample_image_label in labeled case with multiple labels.""" |
518
|
|
|
loader = GeneratorDataLoader(labeled=True, num_indices=1, sample_label="all") |
519
|
|
|
shape = (2, 3, 4, 5) |
520
|
|
|
got_iter = loader.sample_image_label( |
521
|
|
|
moving_image=get_arr(shape=shape[:3], seed=0), |
522
|
|
|
fixed_image=get_arr(shape=shape[:3], seed=1), |
523
|
|
|
moving_label=get_arr(shape=shape, seed=2), |
524
|
|
|
fixed_label=get_arr(shape=shape, seed=3), |
525
|
|
|
image_indices=[1], |
526
|
|
|
) |
527
|
|
|
moving_label = get_arr(shape=shape, seed=2) |
528
|
|
|
fixed_label = get_arr(shape=shape, seed=3) |
529
|
|
|
for i in range(shape[-1]): |
530
|
|
|
got = next(got_iter) |
531
|
|
|
expected = dict( |
532
|
|
|
moving_image=get_arr(shape=shape[:3], seed=0), |
533
|
|
|
fixed_image=get_arr(shape=shape[:3], seed=1), |
534
|
|
|
moving_label=moving_label[:, :, :, i], |
535
|
|
|
fixed_label=fixed_label[:, :, :, i], |
536
|
|
|
indices=np.asarray([1, i], dtype=np.float32), |
537
|
|
|
) |
538
|
|
|
assert all(is_equal_np(got[key], expected[key]) for key in expected.keys()) |
539
|
|
|
|
540
|
|
|
|
541
|
|
|
def test_file_loader(): |
542
|
|
|
""" |
543
|
|
|
Test the functions in FileLoader |
544
|
|
|
""" |
545
|
|
|
# init, no error means passed |
546
|
|
|
loader_grouped = FileLoader( |
547
|
|
|
dir_paths=["/path/grouped_loader/"], name="grouped_loader", grouped=True |
548
|
|
|
) |
549
|
|
|
loader_ungrouped = FileLoader( |
550
|
|
|
dir_paths=["/path/ungrouped_loader/"], name="ungrouped_loader", grouped=False |
551
|
|
|
) |
552
|
|
|
|
553
|
|
|
# init fails with repeated paths |
554
|
|
|
with pytest.raises(ValueError) as err_info: |
555
|
|
|
FileLoader( |
556
|
|
|
dir_paths=["/path/ungrouped_loader/", "/path/ungrouped_loader/"], |
557
|
|
|
name="ungrouped_loader", |
558
|
|
|
grouped=False, |
559
|
|
|
) |
560
|
|
|
assert "dir_paths have repeated elements" in str(err_info.value) |
561
|
|
|
|
562
|
|
|
# not implemented properties / functions |
563
|
|
|
with pytest.raises(NotImplementedError): |
564
|
|
|
loader_grouped.set_data_structure() |
565
|
|
|
with pytest.raises(NotImplementedError): |
566
|
|
|
loader_grouped.set_group_structure() |
567
|
|
|
with pytest.raises(NotImplementedError): |
568
|
|
|
loader_grouped.get_data(1) |
569
|
|
|
with pytest.raises(NotImplementedError): |
570
|
|
|
loader_grouped.get_data_ids() |
571
|
|
|
with pytest.raises(NotImplementedError): |
572
|
|
|
loader_grouped.get_num_images() |
573
|
|
|
with pytest.raises(NotImplementedError): |
574
|
|
|
loader_grouped.close() |
575
|
|
|
|
576
|
|
|
# test grouped file loader functions |
577
|
|
|
assert loader_grouped.group_struct is None |
578
|
|
|
|
579
|
|
|
# create mock group structure with nested list |
580
|
|
|
loader_grouped.group_struct = [[1, 2], [3, 4], [5, 6]] |
581
|
|
|
assert loader_grouped.get_num_groups() == 3 |
582
|
|
|
assert loader_grouped.get_num_images_per_group() == [2, 2, 2] |
583
|
|
|
with pytest.raises(ValueError) as err_info: |
584
|
|
|
loader_grouped.group_struct = [[], [3, 4], [5, 6]] |
585
|
|
|
loader_grouped.get_num_images_per_group() |
586
|
|
|
assert "Groups of ID [0, 2, 2] are empty." in str(err_info.value) |
587
|
|
|
|
588
|
|
|
# test ungrouped file loader |
589
|
|
|
assert loader_ungrouped.group_struct is None |
590
|
|
|
with pytest.raises(AssertionError): |
591
|
|
|
loader_ungrouped.get_num_groups() |
592
|
|
|
with pytest.raises(AssertionError): |
593
|
|
|
loader_ungrouped.get_num_images_per_group() |
594
|
|
|
|