|
1
|
|
|
""" |
|
2
|
|
|
Tests for deepreg/dataset/preprocess.py in |
|
3
|
|
|
pytest style |
|
4
|
|
|
|
|
5
|
|
|
Some internals of the _gen_transform, _transform and |
|
6
|
|
|
transform function, such as: |
|
7
|
|
|
- layer_util.random_transform_generator |
|
8
|
|
|
- layer_util.warp_grid |
|
9
|
|
|
- layer_util.resample |
|
10
|
|
|
Are assumed working, and are tested separately in |
|
11
|
|
|
test_layer_util.py; as such we just check output size here. |
|
12
|
|
|
""" |
|
13
|
|
|
from test.unit.util import is_equal_np, is_equal_tf |
|
14
|
|
|
|
|
15
|
|
|
import numpy as np |
|
16
|
|
|
import pytest |
|
17
|
|
|
import tensorflow as tf |
|
18
|
|
|
|
|
19
|
|
|
import deepreg.dataset |
|
20
|
|
|
import deepreg.dataset.preprocess as preprocess |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
@pytest.mark.parametrize( |
|
24
|
|
|
("moving_input_size", "fixed_input_size", "moving_image_size", "fixed_image_size"), |
|
25
|
|
|
[ |
|
26
|
|
|
((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)), |
|
27
|
|
|
((3, 4, 5), (4, 5, 6), (1, 2, 3), (2, 3, 4)), |
|
28
|
|
|
((2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2)), |
|
29
|
|
|
], |
|
30
|
|
|
) |
|
31
|
|
|
@pytest.mark.parametrize("labeled", [True, False]) |
|
32
|
|
|
def test_resize_inputs( |
|
33
|
|
|
moving_input_size: tuple, |
|
34
|
|
|
fixed_input_size: tuple, |
|
35
|
|
|
moving_image_size: tuple, |
|
36
|
|
|
fixed_image_size: tuple, |
|
37
|
|
|
labeled: bool, |
|
38
|
|
|
): |
|
39
|
|
|
""" |
|
40
|
|
|
Check return shapes. |
|
41
|
|
|
|
|
42
|
|
|
:param moving_input_size: input moving image/label shape |
|
43
|
|
|
:param fixed_input_size: input fixed image/label shape |
|
44
|
|
|
:param moving_image_size: output moving image/label shape |
|
45
|
|
|
:param fixed_image_size: output fixed image/label shape |
|
46
|
|
|
:param labeled: if data is labeled |
|
47
|
|
|
""" |
|
48
|
|
|
num_indices = 2 |
|
49
|
|
|
|
|
50
|
|
|
moving_image = tf.random.uniform(moving_input_size) |
|
51
|
|
|
fixed_image = tf.random.uniform(fixed_input_size) |
|
52
|
|
|
indices = tf.ones((num_indices,)) |
|
53
|
|
|
inputs = dict(moving_image=moving_image, fixed_image=fixed_image, indices=indices) |
|
54
|
|
|
if labeled: |
|
55
|
|
|
moving_label = tf.random.uniform(moving_input_size) |
|
56
|
|
|
fixed_label = tf.random.uniform(fixed_input_size) |
|
57
|
|
|
inputs["moving_label"] = moving_label |
|
58
|
|
|
inputs["fixed_label"] = fixed_label |
|
59
|
|
|
|
|
60
|
|
|
outputs = preprocess.resize_inputs(inputs, moving_image_size, fixed_image_size) |
|
61
|
|
|
assert inputs["indices"].shape == outputs["indices"].shape |
|
62
|
|
|
for k in inputs: |
|
63
|
|
|
if k == "indices": |
|
64
|
|
|
assert outputs[k].shape == inputs[k].shape |
|
65
|
|
|
continue |
|
66
|
|
|
expected_shape = moving_image_size if "moving" in k else fixed_image_size |
|
67
|
|
|
assert outputs[k].shape == expected_shape |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
def test_random_transform_3d_get_config(): |
|
71
|
|
|
"""Check config values.""" |
|
72
|
|
|
config = dict( |
|
73
|
|
|
moving_image_size=(1, 2, 3), |
|
74
|
|
|
fixed_image_size=(2, 3, 4), |
|
75
|
|
|
batch_size=3, |
|
76
|
|
|
name="TestRandomTransformation3D", |
|
77
|
|
|
) |
|
78
|
|
|
expected = {"trainable": False, "dtype": "float32", **config} |
|
79
|
|
|
transform = preprocess.RandomTransformation3D(**config) |
|
80
|
|
|
got = transform.get_config() |
|
81
|
|
|
|
|
82
|
|
|
assert got == expected |
|
83
|
|
|
|
|
84
|
|
|
|
|
85
|
|
|
class TestRandomTransformation: |
|
86
|
|
|
"""Test all functions of RandomTransformation class.""" |
|
87
|
|
|
|
|
88
|
|
|
moving_image_size = (1, 2, 3) |
|
89
|
|
|
fixed_image_size = (2, 3, 4) |
|
90
|
|
|
batch_size = 2 |
|
91
|
|
|
scale = 0.2 |
|
92
|
|
|
num_indices = 3 |
|
93
|
|
|
name = "TestTransformation" |
|
94
|
|
|
common_config = dict( |
|
95
|
|
|
moving_image_size=moving_image_size, |
|
96
|
|
|
fixed_image_size=fixed_image_size, |
|
97
|
|
|
batch_size=batch_size, |
|
98
|
|
|
name=name, |
|
99
|
|
|
) |
|
100
|
|
|
extra_config_dict = dict( |
|
101
|
|
|
affine=dict(scale=0.2), ddf=dict(field_strength=0.2, low_res_size=(1, 2, 3)) |
|
102
|
|
|
) |
|
103
|
|
|
layer_cls_dict = dict( |
|
104
|
|
|
affine=preprocess.RandomAffineTransform3D, |
|
105
|
|
|
ddf=preprocess.RandomDDFTransform3D, |
|
106
|
|
|
) |
|
107
|
|
|
|
|
108
|
|
|
def build_layer(self, name: str) -> preprocess.RandomTransformation3D: |
|
109
|
|
|
""" |
|
110
|
|
|
Build a layer given the layer name. |
|
111
|
|
|
|
|
112
|
|
|
:param name: name of the layer |
|
113
|
|
|
:return: built layer object |
|
114
|
|
|
""" |
|
115
|
|
|
config = {**self.common_config, **self.extra_config_dict[name]} |
|
116
|
|
|
return self.layer_cls_dict[name](**config) |
|
117
|
|
|
|
|
118
|
|
|
@pytest.mark.parametrize("name", ["affine", "ddf"]) |
|
119
|
|
|
def test_get_config(self, name: str): |
|
120
|
|
|
""" |
|
121
|
|
|
Check config values. |
|
122
|
|
|
|
|
123
|
|
|
:param name: name of the layer |
|
124
|
|
|
""" |
|
125
|
|
|
layer = self.build_layer(name) |
|
126
|
|
|
got = layer.get_config() |
|
127
|
|
|
expected = { |
|
128
|
|
|
"trainable": False, |
|
129
|
|
|
"dtype": "float32", |
|
130
|
|
|
**self.common_config, |
|
131
|
|
|
**self.extra_config_dict[name], |
|
132
|
|
|
} |
|
133
|
|
|
assert got == expected |
|
134
|
|
|
|
|
135
|
|
|
@pytest.mark.parametrize( |
|
136
|
|
|
("name", "moving_param_shape", "fixed_param_shape"), |
|
137
|
|
|
[ |
|
138
|
|
|
("affine", (4, 3), (4, 3)), |
|
139
|
|
|
("ddf", (*moving_image_size, 3), (*fixed_image_size, 3)), |
|
140
|
|
|
], |
|
141
|
|
|
) |
|
142
|
|
|
def test_gen_transform_params( |
|
143
|
|
|
self, name: str, moving_param_shape: tuple, fixed_param_shape: tuple |
|
144
|
|
|
): |
|
145
|
|
|
""" |
|
146
|
|
|
Check return shapes and moving/fixed params should be different. |
|
147
|
|
|
|
|
148
|
|
|
:param name: name of the layer |
|
149
|
|
|
:param moving_param_shape: params shape for moving image/label |
|
150
|
|
|
:param fixed_param_shape: params shape for fixed image/label |
|
151
|
|
|
""" |
|
152
|
|
|
layer = self.build_layer(name) |
|
153
|
|
|
moving, fixed = layer.gen_transform_params() |
|
154
|
|
|
assert moving.shape == (self.batch_size, *moving_param_shape) |
|
155
|
|
|
assert fixed.shape == (self.batch_size, *fixed_param_shape) |
|
156
|
|
|
assert not is_equal_np(moving, fixed) |
|
157
|
|
|
|
|
158
|
|
|
@pytest.mark.parametrize("name", ["affine", "ddf"]) |
|
159
|
|
|
def test_transform(self, name: str): |
|
160
|
|
|
""" |
|
161
|
|
|
Check return shapes. |
|
162
|
|
|
|
|
163
|
|
|
:param name: name of the layer |
|
164
|
|
|
""" |
|
165
|
|
|
layer = self.build_layer(name) |
|
166
|
|
|
moving_image = tf.random.uniform( |
|
167
|
|
|
shape=(self.batch_size, *self.moving_image_size) |
|
168
|
|
|
) |
|
169
|
|
|
moving_params, _ = layer.gen_transform_params() |
|
170
|
|
|
transformed = layer.transform( |
|
171
|
|
|
image=moving_image, |
|
172
|
|
|
grid_ref=layer.moving_grid_ref, |
|
173
|
|
|
params=moving_params, |
|
174
|
|
|
) |
|
175
|
|
|
assert transformed.shape == moving_image.shape |
|
176
|
|
|
|
|
177
|
|
|
@pytest.mark.parametrize("name", ["affine", "ddf"]) |
|
178
|
|
|
@pytest.mark.parametrize("labeled", [True, False]) |
|
179
|
|
|
def test_call(self, name: str, labeled: bool): |
|
180
|
|
|
""" |
|
181
|
|
|
Check return shapes. |
|
182
|
|
|
|
|
183
|
|
|
:param name: name of the layer |
|
184
|
|
|
:param labeled: if data is labeled |
|
185
|
|
|
""" |
|
186
|
|
|
layer = self.build_layer(name) |
|
187
|
|
|
|
|
188
|
|
|
moving_shape = (self.batch_size, *self.moving_image_size) |
|
189
|
|
|
fixed_shape = (self.batch_size, *self.fixed_image_size) |
|
190
|
|
|
moving_image = tf.random.uniform(moving_shape) |
|
191
|
|
|
fixed_image = tf.random.uniform(fixed_shape) |
|
192
|
|
|
indices = tf.ones((self.batch_size, self.num_indices)) |
|
193
|
|
|
inputs = dict( |
|
194
|
|
|
moving_image=moving_image, fixed_image=fixed_image, indices=indices |
|
195
|
|
|
) |
|
196
|
|
|
if labeled: |
|
197
|
|
|
moving_label = tf.random.uniform(moving_shape) |
|
198
|
|
|
fixed_label = tf.random.uniform(fixed_shape) |
|
199
|
|
|
inputs["moving_label"] = moving_label |
|
200
|
|
|
inputs["fixed_label"] = fixed_label |
|
201
|
|
|
|
|
202
|
|
|
outputs = layer.call(inputs) |
|
203
|
|
|
for k in inputs: |
|
204
|
|
|
assert outputs[k].shape == inputs[k].shape |
|
205
|
|
|
|
|
206
|
|
|
|
|
207
|
|
|
def test_random_transform_generator(): |
|
208
|
|
|
""" |
|
209
|
|
|
Test random_transform_generator by confirming that it generates |
|
210
|
|
|
appropriate solutions and output sizes for seeded examples. |
|
211
|
|
|
""" |
|
212
|
|
|
# Check shapes are correct Batch Size = 1 - Pass |
|
213
|
|
|
batch_size = 1 |
|
214
|
|
|
transforms = deepreg.dataset.preprocess.gen_rand_affine_transform(batch_size, 0) |
|
215
|
|
|
assert transforms.shape == (batch_size, 4, 3) |
|
216
|
|
|
|
|
217
|
|
|
# Check numerical outputs are correct for a given seed - Pass |
|
218
|
|
|
batch_size = 1 |
|
219
|
|
|
scale = 0.1 |
|
220
|
|
|
seed = 0 |
|
221
|
|
|
expected = tf.constant( |
|
222
|
|
|
np.array( |
|
223
|
|
|
[ |
|
224
|
|
|
[ |
|
225
|
|
|
[9.4661278e-01, -3.8267835e-03, 3.6934228e-03], |
|
226
|
|
|
[5.5613145e-03, 9.8034811e-01, -1.8044969e-02], |
|
227
|
|
|
[1.9651605e-04, 1.4576728e-02, 9.6243286e-01], |
|
228
|
|
|
[-2.5107686e-03, 1.9579126e-02, -1.2195010e-02], |
|
229
|
|
|
] |
|
230
|
|
|
], |
|
231
|
|
|
dtype=np.float32, |
|
232
|
|
|
) |
|
233
|
|
|
) # shape = (1, 4, 3) |
|
234
|
|
|
got = deepreg.dataset.preprocess.gen_rand_affine_transform( |
|
235
|
|
|
batch_size=batch_size, scale=scale, seed=seed |
|
236
|
|
|
) |
|
237
|
|
|
assert is_equal_tf(got, expected) |
|
238
|
|
|
|