1
|
|
|
# coding=utf-8 |
|
|
|
|
2
|
|
|
|
3
|
|
|
from typing import List, Tuple, Union |
4
|
|
|
|
5
|
|
|
import tensorflow as tf |
6
|
|
|
import tensorflow.keras.layers as tfkl |
7
|
|
|
from tensorflow.python.keras.utils import conv_utils |
8
|
|
|
|
9
|
|
|
from deepreg.model import layer, layer_util |
10
|
|
|
from deepreg.model.backbone.interface import Backbone |
11
|
|
|
from deepreg.model.layer import Extraction |
12
|
|
|
from deepreg.registry import REGISTRY |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
@REGISTRY.register_backbone(name="unet") |
16
|
|
|
class UNet(Backbone): |
17
|
|
|
""" |
18
|
|
|
Class that implements an adapted 3D UNet. |
19
|
|
|
|
20
|
|
|
Reference: |
21
|
|
|
|
22
|
|
|
- O. Ronneberger, P. Fischer, and T. Brox, |
23
|
|
|
“U-net: Convolutional networks for biomedical image segmentation,”, |
24
|
|
|
Lecture Notes in Computer Science, 2015, vol. 9351, pp. 234–241. |
25
|
|
|
https://arxiv.org/abs/1505.04597 |
26
|
|
|
""" |
27
|
|
|
|
28
|
|
|
def __init__( |
29
|
|
|
self, |
30
|
|
|
image_size: tuple, |
31
|
|
|
num_channel_initial: int, |
32
|
|
|
depth: int, |
33
|
|
|
out_kernel_initializer: str, |
34
|
|
|
out_activation: str, |
35
|
|
|
out_channels: int, |
36
|
|
|
extract_levels: Tuple[int] = (0,), |
37
|
|
|
pooling: bool = True, |
38
|
|
|
concat_skip: bool = False, |
39
|
|
|
encode_kernel_sizes: Union[int, List[int]] = 3, |
40
|
|
|
decode_kernel_sizes: Union[int, List[int]] = 3, |
41
|
|
|
strides: int = 2, |
42
|
|
|
padding: str = "same", |
43
|
|
|
name: str = "Unet", |
44
|
|
|
**kwargs, |
45
|
|
|
): |
46
|
|
|
""" |
47
|
|
|
Initialise UNet. |
48
|
|
|
|
49
|
|
|
:param image_size: (dim1, dim2, dim3), dims of input image. |
50
|
|
|
:param num_channel_initial: number of initial channels |
51
|
|
|
:param depth: input is at level 0, bottom is at level depth. |
52
|
|
|
:param out_kernel_initializer: kernel initializer for the last layer |
53
|
|
|
:param out_activation: activation at the last layer |
54
|
|
|
:param out_channels: number of channels for the output |
55
|
|
|
:param extract_levels: list, which levels from net to extract. |
56
|
|
|
:param pooling: for down-sampling, use non-parameterized |
57
|
|
|
pooling if true, otherwise use conv3d |
58
|
|
|
:param concat_skip: when up-sampling, concatenate skipped |
59
|
|
|
tensor if true, otherwise use addition |
60
|
|
|
:param encode_kernel_sizes: kernel size for down-sampling |
61
|
|
|
:param decode_kernel_sizes: kernel size for up-sampling |
62
|
|
|
:param strides: strides for down-sampling |
63
|
|
|
:param padding: padding mode for all conv layers |
64
|
|
|
:param name: name of the backbone. |
65
|
|
|
:param kwargs: additional arguments. |
66
|
|
|
""" |
67
|
|
|
super().__init__( |
68
|
|
|
image_size=image_size, |
69
|
|
|
out_channels=out_channels, |
70
|
|
|
num_channel_initial=num_channel_initial, |
71
|
|
|
out_kernel_initializer=out_kernel_initializer, |
72
|
|
|
out_activation=out_activation, |
73
|
|
|
name=name, |
74
|
|
|
**kwargs, |
75
|
|
|
) |
76
|
|
|
|
77
|
|
|
# save parameters |
78
|
|
|
assert max(extract_levels) <= depth |
79
|
|
|
self._extract_levels = extract_levels |
80
|
|
|
self._depth = depth |
81
|
|
|
|
82
|
|
|
# save extra parameters |
83
|
|
|
self._concat_skip = concat_skip |
84
|
|
|
self._pooling = pooling |
85
|
|
|
self._encode_kernel_sizes = encode_kernel_sizes |
86
|
|
|
self._decode_kernel_sizes = decode_kernel_sizes |
87
|
|
|
self._strides = strides |
88
|
|
|
self._padding = padding |
89
|
|
|
|
90
|
|
|
# init layers |
91
|
|
|
# all lists start with d = 0 |
92
|
|
|
self._encode_convs = None |
93
|
|
|
self._encode_pools = None |
94
|
|
|
self._bottom_block = None |
95
|
|
|
self._decode_deconvs = None |
96
|
|
|
self._decode_convs = None |
97
|
|
|
self._output_block = None |
98
|
|
|
|
99
|
|
|
# build layers |
100
|
|
|
self.build_layers( |
101
|
|
|
image_size=image_size, |
102
|
|
|
num_channel_initial=num_channel_initial, |
103
|
|
|
depth=depth, |
104
|
|
|
extract_levels=extract_levels, |
105
|
|
|
encode_kernel_sizes=encode_kernel_sizes, |
106
|
|
|
decode_kernel_sizes=decode_kernel_sizes, |
107
|
|
|
strides=strides, |
108
|
|
|
padding=padding, |
109
|
|
|
out_kernel_initializer=out_kernel_initializer, |
110
|
|
|
out_activation=out_activation, |
111
|
|
|
out_channels=out_channels, |
112
|
|
|
) |
113
|
|
|
|
114
|
|
|
def build_conv_block( |
115
|
|
|
self, filters: int, kernel_size: int, padding: str |
116
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
117
|
|
|
""" |
118
|
|
|
Build a conv block for down-sampling or up-sampling. |
119
|
|
|
|
120
|
|
|
This block do not change the tensor shape (width, height, depth), |
121
|
|
|
it only changes the number of channels. |
122
|
|
|
|
123
|
|
|
:param filters: number of channels for output |
124
|
|
|
:param kernel_size: arg for conv3d |
125
|
|
|
:param padding: arg for conv3d |
126
|
|
|
:return: a block consists of one or multiple layers |
127
|
|
|
""" |
128
|
|
|
return tf.keras.Sequential( |
129
|
|
|
[ |
130
|
|
|
layer.Conv3dBlock( |
131
|
|
|
filters=filters, |
132
|
|
|
kernel_size=kernel_size, |
133
|
|
|
padding=padding, |
134
|
|
|
), |
135
|
|
|
layer.ResidualConv3dBlock( |
136
|
|
|
filters=filters, |
137
|
|
|
kernel_size=kernel_size, |
138
|
|
|
padding=padding, |
139
|
|
|
), |
140
|
|
|
] |
141
|
|
|
) |
142
|
|
|
|
143
|
|
|
def build_down_sampling_block( |
144
|
|
|
self, filters: int, kernel_size: int, padding: str, strides: int |
145
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
146
|
|
|
""" |
147
|
|
|
Build a block for down-sampling. |
148
|
|
|
|
149
|
|
|
This block changes the tensor shape (width, height, depth), |
150
|
|
|
but it does not changes the number of channels. |
151
|
|
|
|
152
|
|
|
:param filters: number of channels for output, arg for conv3d |
153
|
|
|
:param kernel_size: arg for pool3d or conv3d |
154
|
|
|
:param padding: arg for pool3d or conv3d |
155
|
|
|
:param strides: arg for pool3d or conv3d |
156
|
|
|
:return: a block consists of one or multiple layers |
157
|
|
|
""" |
158
|
|
|
if self._pooling: |
|
|
|
|
159
|
|
|
return tfkl.MaxPool3D( |
160
|
|
|
pool_size=kernel_size, strides=strides, padding=padding |
161
|
|
|
) |
162
|
|
|
else: |
163
|
|
|
return layer.Conv3dBlock( |
164
|
|
|
filters=filters, |
165
|
|
|
kernel_size=kernel_size, |
166
|
|
|
strides=strides, |
167
|
|
|
padding=padding, |
168
|
|
|
) |
169
|
|
|
|
170
|
|
|
def build_bottom_block( |
171
|
|
|
self, filters: int, kernel_size: int, padding: str |
172
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
173
|
|
|
""" |
174
|
|
|
Build a block for bottom layer. |
175
|
|
|
|
176
|
|
|
This block do not change the tensor shape (width, height, depth), |
177
|
|
|
it only changes the number of channels. |
178
|
|
|
|
179
|
|
|
:param filters: number of channels for output |
180
|
|
|
:param kernel_size: arg for conv3d |
181
|
|
|
:param padding: arg for conv3d |
182
|
|
|
:return: a block consists of one or multiple layers |
183
|
|
|
""" |
184
|
|
|
return tf.keras.Sequential( |
185
|
|
|
[ |
186
|
|
|
layer.Conv3dBlock( |
187
|
|
|
filters=filters, |
188
|
|
|
kernel_size=kernel_size, |
189
|
|
|
padding=padding, |
190
|
|
|
), |
191
|
|
|
layer.ResidualConv3dBlock( |
192
|
|
|
filters=filters, |
193
|
|
|
kernel_size=kernel_size, |
194
|
|
|
padding=padding, |
195
|
|
|
), |
196
|
|
|
] |
197
|
|
|
) |
198
|
|
|
|
199
|
|
|
def build_up_sampling_block( |
200
|
|
|
self, |
201
|
|
|
filters: int, |
202
|
|
|
output_padding: int, |
203
|
|
|
kernel_size: int, |
204
|
|
|
padding: str, |
205
|
|
|
strides: int, |
206
|
|
|
output_shape: tuple, |
|
|
|
|
207
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
208
|
|
|
""" |
209
|
|
|
Build a block for up-sampling. |
210
|
|
|
|
211
|
|
|
This block changes the tensor shape (width, height, depth), |
212
|
|
|
but it does not changes the number of channels. |
213
|
|
|
|
214
|
|
|
:param filters: number of channels for output |
215
|
|
|
:param output_padding: padding for output |
216
|
|
|
:param kernel_size: arg for deconv3d |
217
|
|
|
:param padding: arg for deconv3d |
218
|
|
|
:param strides: arg for deconv3d |
219
|
|
|
:param output_shape: shape of the output tensor |
220
|
|
|
:return: a block consists of one or multiple layers |
221
|
|
|
""" |
222
|
|
|
return layer.Deconv3dBlock( |
223
|
|
|
filters=filters, |
224
|
|
|
output_padding=output_padding, |
225
|
|
|
kernel_size=kernel_size, |
226
|
|
|
strides=strides, |
227
|
|
|
padding=padding, |
228
|
|
|
) |
229
|
|
|
|
230
|
|
|
def build_skip_block(self) -> Union[tf.keras.Model, tfkl.Layer]: |
231
|
|
|
""" |
232
|
|
|
Build a block for combining skipped tensor and up-sampled one. |
233
|
|
|
|
234
|
|
|
This block do not change the tensor shape (width, height, depth), |
235
|
|
|
it only changes the number of channels. |
236
|
|
|
|
237
|
|
|
The input to this block is a list of tensors. |
238
|
|
|
|
239
|
|
|
:return: a block consists of one or multiple layers |
240
|
|
|
""" |
241
|
|
|
if self._concat_skip: |
|
|
|
|
242
|
|
|
return tfkl.Concatenate() |
243
|
|
|
else: |
244
|
|
|
return tfkl.Add() |
245
|
|
|
|
246
|
|
|
def build_output_block( |
247
|
|
|
self, |
248
|
|
|
image_size: Tuple[int], |
249
|
|
|
extract_levels: Tuple[int], |
250
|
|
|
out_channels: int, |
251
|
|
|
out_kernel_initializer: str, |
252
|
|
|
out_activation: str, |
253
|
|
|
) -> Union[tf.keras.Model, tfkl.Layer]: |
254
|
|
|
""" |
255
|
|
|
Build a block for output. |
256
|
|
|
|
257
|
|
|
The input to this block is a list of tensors. |
258
|
|
|
|
259
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
260
|
|
|
:param extract_levels: number of extraction levels. |
261
|
|
|
:param out_channels: number of channels for the extractions |
262
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
263
|
|
|
:param out_activation: activation to use at end layer. |
264
|
|
|
:return: a block consists of one or multiple layers |
265
|
|
|
""" |
266
|
|
|
return Extraction( |
267
|
|
|
image_size=image_size, |
268
|
|
|
extract_levels=extract_levels, |
269
|
|
|
out_channels=out_channels, |
270
|
|
|
out_kernel_initializer=out_kernel_initializer, |
271
|
|
|
out_activation=out_activation, |
272
|
|
|
) |
273
|
|
|
|
274
|
|
|
def build_layers( |
275
|
|
|
self, |
276
|
|
|
image_size: tuple, |
277
|
|
|
num_channel_initial: int, |
278
|
|
|
depth: int, |
279
|
|
|
extract_levels: Tuple[int], |
280
|
|
|
encode_kernel_sizes: Union[int, List[int]], |
281
|
|
|
decode_kernel_sizes: Union[int, List[int]], |
282
|
|
|
strides: int, |
283
|
|
|
padding: str, |
284
|
|
|
out_kernel_initializer: str, |
285
|
|
|
out_activation: str, |
286
|
|
|
out_channels: int, |
287
|
|
|
): |
288
|
|
|
""" |
289
|
|
|
Build layers that will be used in call. |
290
|
|
|
|
291
|
|
|
:param image_size: (dim1, dim2, dim3). |
292
|
|
|
:param num_channel_initial: number of initial channels. |
293
|
|
|
:param depth: network starts with d = 0, and the bottom has d = depth. |
294
|
|
|
:param extract_levels: from which depths the output will be built. |
295
|
|
|
:param encode_kernel_sizes: kernel size for down-sampling |
296
|
|
|
:param decode_kernel_sizes: kernel size for up-sampling |
297
|
|
|
:param strides: strides for down-sampling |
298
|
|
|
:param padding: padding mode for all conv layers |
299
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
300
|
|
|
:param out_activation: activation to use at end layer. |
301
|
|
|
:param out_channels: number of channels for the extractions |
302
|
|
|
""" |
303
|
|
|
tensor_shapes = self.build_encode_layers( |
304
|
|
|
image_size=image_size, |
305
|
|
|
num_channel_initial=num_channel_initial, |
306
|
|
|
depth=depth, |
307
|
|
|
encode_kernel_sizes=encode_kernel_sizes, |
308
|
|
|
strides=strides, |
309
|
|
|
padding=padding, |
310
|
|
|
) |
311
|
|
|
self.build_decode_layers( |
312
|
|
|
tensor_shapes=tensor_shapes, |
313
|
|
|
image_size=image_size, |
314
|
|
|
num_channel_initial=num_channel_initial, |
315
|
|
|
depth=depth, |
316
|
|
|
extract_levels=extract_levels, |
317
|
|
|
decode_kernel_sizes=decode_kernel_sizes, |
318
|
|
|
strides=strides, |
319
|
|
|
padding=padding, |
320
|
|
|
out_kernel_initializer=out_kernel_initializer, |
321
|
|
|
out_activation=out_activation, |
322
|
|
|
out_channels=out_channels, |
323
|
|
|
) |
324
|
|
|
|
325
|
|
|
def build_encode_layers( |
326
|
|
|
self, |
327
|
|
|
image_size: tuple, |
328
|
|
|
num_channel_initial: int, |
329
|
|
|
depth: int, |
330
|
|
|
encode_kernel_sizes: Union[int, List[int]], |
331
|
|
|
strides: int, |
332
|
|
|
padding: str, |
333
|
|
|
) -> List[Tuple]: |
334
|
|
|
""" |
335
|
|
|
Build layers for encoding. |
336
|
|
|
|
337
|
|
|
:param image_size: (dim1, dim2, dim3). |
338
|
|
|
:param num_channel_initial: number of initial channels. |
339
|
|
|
:param depth: network starts with d = 0, and the bottom has d = depth. |
340
|
|
|
:param encode_kernel_sizes: kernel size for down-sampling |
341
|
|
|
:param strides: strides for down-sampling |
342
|
|
|
:param padding: padding mode for all conv layers |
343
|
|
|
:return: list of tensor shapes starting from d = 0 |
344
|
|
|
""" |
345
|
|
|
# init params |
346
|
|
|
num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)] |
347
|
|
|
if isinstance(encode_kernel_sizes, int): |
348
|
|
|
encode_kernel_sizes = [encode_kernel_sizes] * (depth + 1) |
349
|
|
|
assert len(encode_kernel_sizes) == depth + 1 |
350
|
|
|
|
351
|
|
|
# encoding / down-sampling |
352
|
|
|
self._encode_convs = [] |
353
|
|
|
self._encode_pools = [] |
354
|
|
|
tensor_shape = image_size |
355
|
|
|
tensor_shapes = [tensor_shape] |
356
|
|
|
for d in range(depth): |
357
|
|
|
encode_conv = self.build_conv_block( |
358
|
|
|
filters=num_channels[d], |
359
|
|
|
kernel_size=encode_kernel_sizes[d], |
360
|
|
|
padding=padding, |
361
|
|
|
) |
362
|
|
|
encode_pool = self.build_down_sampling_block( |
363
|
|
|
filters=num_channels[d], |
364
|
|
|
kernel_size=strides, |
365
|
|
|
strides=strides, |
366
|
|
|
padding=padding, |
367
|
|
|
) |
368
|
|
|
tensor_shape = tuple( |
369
|
|
|
conv_utils.conv_output_length( |
370
|
|
|
input_length=x, |
371
|
|
|
filter_size=strides, |
372
|
|
|
padding=padding, |
373
|
|
|
stride=strides, |
374
|
|
|
dilation=1, |
375
|
|
|
) |
376
|
|
|
for x in tensor_shape |
377
|
|
|
) |
378
|
|
|
self._encode_convs.append(encode_conv) |
379
|
|
|
self._encode_pools.append(encode_pool) |
380
|
|
|
tensor_shapes.append(tensor_shape) |
381
|
|
|
|
382
|
|
|
# bottom layer |
383
|
|
|
self._bottom_block = self.build_bottom_block( |
384
|
|
|
filters=num_channels[depth], |
385
|
|
|
kernel_size=encode_kernel_sizes[depth], |
386
|
|
|
padding=padding, |
387
|
|
|
) |
388
|
|
|
return tensor_shapes |
389
|
|
|
|
390
|
|
|
def build_decode_layers( |
391
|
|
|
self, |
392
|
|
|
tensor_shapes: List[Tuple], |
393
|
|
|
image_size: tuple, |
394
|
|
|
num_channel_initial: int, |
395
|
|
|
depth: int, |
396
|
|
|
extract_levels: Tuple[int], |
397
|
|
|
decode_kernel_sizes: Union[int, List[int]], |
398
|
|
|
strides: int, |
399
|
|
|
padding: str, |
400
|
|
|
out_kernel_initializer: str, |
401
|
|
|
out_activation: str, |
402
|
|
|
out_channels: int, |
403
|
|
|
): |
404
|
|
|
""" |
405
|
|
|
Build layers for decoding. |
406
|
|
|
|
407
|
|
|
:param tensor_shapes: shapes calculated in encoder |
408
|
|
|
:param image_size: (dim1, dim2, dim3). |
409
|
|
|
:param num_channel_initial: number of initial channels. |
410
|
|
|
:param depth: network starts with d = 0, and the bottom has d = depth. |
411
|
|
|
:param extract_levels: from which depths the output will be built. |
412
|
|
|
:param decode_kernel_sizes: kernel size for up-sampling |
413
|
|
|
:param strides: strides for down-sampling |
414
|
|
|
:param padding: padding mode for all conv layers |
415
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
416
|
|
|
:param out_activation: activation to use at end layer. |
417
|
|
|
:param out_channels: number of channels for the extractions |
418
|
|
|
""" |
419
|
|
|
# init params |
420
|
|
|
min_extract_level = min(extract_levels) |
421
|
|
|
num_channels = [num_channel_initial * (2 ** d) for d in range(depth + 1)] |
422
|
|
|
if isinstance(decode_kernel_sizes, int): |
423
|
|
|
decode_kernel_sizes = [decode_kernel_sizes] * depth |
424
|
|
|
assert len(decode_kernel_sizes) == depth |
425
|
|
|
|
426
|
|
|
# decoding / up-sampling |
427
|
|
|
self._decode_deconvs = [] |
428
|
|
|
self._decode_convs = [] |
429
|
|
|
for d in range(depth - 1, min_extract_level - 1, -1): |
430
|
|
|
kernel_size = decode_kernel_sizes[d] |
431
|
|
|
output_padding = layer_util.deconv_output_padding( |
432
|
|
|
input_shape=tensor_shapes[d + 1], |
433
|
|
|
output_shape=tensor_shapes[d], |
434
|
|
|
kernel_size=kernel_size, |
435
|
|
|
stride=strides, |
436
|
|
|
padding=padding, |
437
|
|
|
) |
438
|
|
|
decode_deconv = self.build_up_sampling_block( |
439
|
|
|
filters=num_channels[d], |
440
|
|
|
output_padding=output_padding, |
441
|
|
|
kernel_size=kernel_size, |
442
|
|
|
strides=strides, |
443
|
|
|
padding=padding, |
444
|
|
|
output_shape=tensor_shapes[d], |
445
|
|
|
) |
446
|
|
|
decode_conv = self.build_conv_block( |
447
|
|
|
filters=num_channels[d], kernel_size=kernel_size, padding=padding |
448
|
|
|
) |
449
|
|
|
self._decode_deconvs = [decode_deconv] + self._decode_deconvs |
450
|
|
|
self._decode_convs = [decode_conv] + self._decode_convs |
451
|
|
|
if min_extract_level > 0: |
452
|
|
|
# add Nones to make lists have length depth - 1 |
453
|
|
|
self._decode_deconvs = [None] * min_extract_level + self._decode_deconvs |
454
|
|
|
self._decode_convs = [None] * min_extract_level + self._decode_convs |
455
|
|
|
|
456
|
|
|
# extraction |
457
|
|
|
self._output_block = self.build_output_block( |
458
|
|
|
image_size=image_size, |
459
|
|
|
extract_levels=extract_levels, |
460
|
|
|
out_channels=out_channels, |
461
|
|
|
out_kernel_initializer=out_kernel_initializer, |
462
|
|
|
out_activation=out_activation, |
463
|
|
|
) |
464
|
|
|
|
465
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
466
|
|
|
""" |
467
|
|
|
Build compute graph based on built layers. |
468
|
|
|
|
469
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
470
|
|
|
:param training: None or bool. |
471
|
|
|
:param mask: None or tf.Tensor. |
472
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
473
|
|
|
""" |
474
|
|
|
|
475
|
|
|
# encoding / down-sampling |
476
|
|
|
skips = [] |
477
|
|
|
encoded = inputs |
478
|
|
|
for d in range(self._depth): |
479
|
|
|
skip = self._encode_convs[d](inputs=encoded, training=training) |
480
|
|
|
encoded = self._encode_pools[d](inputs=skip, training=training) |
481
|
|
|
skips.append(skip) |
482
|
|
|
|
483
|
|
|
# bottom |
484
|
|
|
decoded = self._bottom_block(inputs=encoded, training=training) |
485
|
|
|
|
486
|
|
|
# decoding / up-sampling |
487
|
|
|
outs = [decoded] |
488
|
|
|
for d in range(self._depth - 1, min(self._extract_levels) - 1, -1): |
489
|
|
|
decoded = self._decode_deconvs[d](inputs=decoded, training=training) |
490
|
|
|
decoded = self.build_skip_block()([decoded, skips[d]]) |
491
|
|
|
decoded = self._decode_convs[d](inputs=decoded, training=training) |
492
|
|
|
outs = [decoded] + outs |
493
|
|
|
|
494
|
|
|
# output |
495
|
|
|
output = self._output_block(outs) |
496
|
|
|
|
497
|
|
|
return output |
498
|
|
|
|
499
|
|
|
def get_config(self) -> dict: |
500
|
|
|
"""Return the config dictionary for recreating this class.""" |
501
|
|
|
config = super().get_config() |
502
|
|
|
config.update( |
503
|
|
|
depth=self._depth, |
504
|
|
|
extract_levels=self._extract_levels, |
505
|
|
|
pooling=self._pooling, |
506
|
|
|
concat_skip=self._concat_skip, |
507
|
|
|
encode_kernel_sizes=self._encode_kernel_sizes, |
508
|
|
|
decode_kernel_sizes=self._decode_kernel_sizes, |
509
|
|
|
strides=self._strides, |
510
|
|
|
padding=self._padding, |
511
|
|
|
) |
512
|
|
|
return config |
513
|
|
|
|