|
1
|
|
|
# coding=utf-8 |
|
|
|
|
|
|
2
|
|
|
|
|
3
|
|
|
from typing import List |
|
4
|
|
|
|
|
5
|
|
|
import tensorflow as tf |
|
6
|
|
|
import tensorflow.keras.layers as tfkl |
|
7
|
|
|
|
|
8
|
|
|
import deepreg.model.layer_util |
|
9
|
|
|
from deepreg.model import layer |
|
10
|
|
|
from deepreg.model.backbone.interface import Backbone |
|
11
|
|
|
from deepreg.registry import REGISTRY |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
|
|
@REGISTRY.register_backbone(name="local") |
|
15
|
|
|
class LocalNet(Backbone): |
|
16
|
|
|
""" |
|
17
|
|
|
Build LocalNet for image registration. |
|
18
|
|
|
|
|
19
|
|
|
Reference: |
|
20
|
|
|
|
|
21
|
|
|
- Hu, Yipeng, et al. |
|
22
|
|
|
"Weakly-supervised convolutional neural networks |
|
23
|
|
|
for multimodal image registration." |
|
24
|
|
|
Medical image analysis 49 (2018): 1-13. |
|
25
|
|
|
https://doi.org/10.1016/j.media.2018.07.002 |
|
26
|
|
|
|
|
27
|
|
|
- Hu, Yipeng, et al. |
|
28
|
|
|
"Label-driven weakly-supervised learning |
|
29
|
|
|
for multimodal deformable image registration," |
|
30
|
|
|
https://arxiv.org/abs/1711.01666 |
|
31
|
|
|
""" |
|
32
|
|
|
|
|
33
|
|
|
def __init__( |
|
34
|
|
|
self, |
|
35
|
|
|
image_size: tuple, |
|
36
|
|
|
out_channels: int, |
|
37
|
|
|
num_channel_initial: int, |
|
38
|
|
|
extract_levels: List[int], |
|
39
|
|
|
out_kernel_initializer: str, |
|
40
|
|
|
out_activation: str, |
|
41
|
|
|
use_additive_upsampling: bool = True, |
|
42
|
|
|
name: str = "LocalNet", |
|
43
|
|
|
**kwargs, |
|
44
|
|
|
): |
|
45
|
|
|
""" |
|
46
|
|
|
Image is encoded gradually, i from level 0 to E, |
|
47
|
|
|
then it is decoded gradually, j from level E to D. |
|
48
|
|
|
Some of the decoded levels are used for generating extractions. |
|
49
|
|
|
|
|
50
|
|
|
So, extract_levels are between [0, E] with E = max(extract_levels), |
|
51
|
|
|
and D = min(extract_levels). |
|
52
|
|
|
|
|
53
|
|
|
:param image_size: such as (dim1, dim2, dim3) |
|
54
|
|
|
:param out_channels: number of channels for the extractions |
|
55
|
|
|
:param num_channel_initial: number of initial channels. |
|
56
|
|
|
:param extract_levels: number of extraction levels. |
|
57
|
|
|
:param out_kernel_initializer: initializer to use for kernels. |
|
58
|
|
|
:param out_activation: activation to use at end layer. |
|
59
|
|
|
:param use_additive_upsampling: whether use additive up-sampling. |
|
60
|
|
|
:param name: name of the backbone. |
|
61
|
|
|
:param kwargs: additional arguments. |
|
62
|
|
|
""" |
|
63
|
|
|
super().__init__( |
|
64
|
|
|
image_size=image_size, |
|
65
|
|
|
out_channels=out_channels, |
|
66
|
|
|
num_channel_initial=num_channel_initial, |
|
67
|
|
|
out_kernel_initializer=out_kernel_initializer, |
|
68
|
|
|
out_activation=out_activation, |
|
69
|
|
|
name=name, |
|
70
|
|
|
**kwargs, |
|
71
|
|
|
) |
|
72
|
|
|
|
|
73
|
|
|
# save parameters |
|
74
|
|
|
self._extract_levels = extract_levels |
|
75
|
|
|
self._use_additive_upsampling = use_additive_upsampling |
|
76
|
|
|
self._extract_max_level = max(self._extract_levels) # E |
|
77
|
|
|
self._extract_min_level = min(self._extract_levels) # D |
|
78
|
|
|
|
|
79
|
|
|
# init layer variables |
|
80
|
|
|
num_channels = [ |
|
81
|
|
|
num_channel_initial * (2 ** level) |
|
82
|
|
|
for level in range(self._extract_max_level + 1) |
|
83
|
|
|
] # level 0 to E |
|
84
|
|
|
kernel_sizes = [ |
|
85
|
|
|
7 if level == 0 else 3 for level in range(self._extract_max_level + 1) |
|
86
|
|
|
] |
|
87
|
|
|
self._downsample_convs = [] |
|
88
|
|
|
self._downsample_pools = [] |
|
89
|
|
|
tensor_shape = image_size |
|
90
|
|
|
self._tensor_shapes = [tensor_shape] |
|
91
|
|
|
for i in range(self._extract_max_level): |
|
92
|
|
|
downsample_conv = tf.keras.Sequential( |
|
93
|
|
|
[ |
|
94
|
|
|
layer.Conv3dBlock( |
|
95
|
|
|
filters=num_channels[i], |
|
96
|
|
|
kernel_size=kernel_sizes[i], |
|
97
|
|
|
padding="same", |
|
98
|
|
|
), |
|
99
|
|
|
layer.ResidualConv3dBlock( |
|
100
|
|
|
filters=num_channels[i], |
|
101
|
|
|
kernel_size=kernel_sizes[i], |
|
102
|
|
|
padding="same", |
|
103
|
|
|
), |
|
104
|
|
|
] |
|
105
|
|
|
) |
|
106
|
|
|
downsample_pool = tfkl.MaxPool3D(pool_size=2, strides=2, padding="same") |
|
107
|
|
|
tensor_shape = tuple((x + 1) // 2 for x in tensor_shape) |
|
108
|
|
|
self._downsample_convs.append(downsample_conv) |
|
109
|
|
|
self._downsample_pools.append(downsample_pool) |
|
110
|
|
|
self._tensor_shapes.append(tensor_shape) |
|
111
|
|
|
|
|
112
|
|
|
self._conv3d_block = layer.Conv3dBlock( |
|
113
|
|
|
filters=num_channels[-1], kernel_size=3, padding="same" |
|
114
|
|
|
) # level E |
|
115
|
|
|
|
|
116
|
|
|
self._upsample_deconvs = [] |
|
117
|
|
|
self._resizes = [] |
|
118
|
|
|
self._upsample_convs = [] |
|
119
|
|
|
for level in range( |
|
120
|
|
|
self._extract_max_level - 1, self._extract_min_level - 1, -1 |
|
121
|
|
|
): # level D to E-1 |
|
122
|
|
|
padding = deepreg.model.layer_util.deconv_output_padding( |
|
123
|
|
|
input_shape=self._tensor_shapes[level + 1], |
|
124
|
|
|
output_shape=self._tensor_shapes[level], |
|
125
|
|
|
kernel_size=kernel_sizes[level], |
|
126
|
|
|
stride=2, |
|
127
|
|
|
padding="same", |
|
128
|
|
|
) |
|
129
|
|
|
upsample_deconv = layer.Deconv3dBlock( |
|
130
|
|
|
filters=num_channels[level], |
|
131
|
|
|
output_padding=padding, |
|
132
|
|
|
kernel_size=3, |
|
133
|
|
|
strides=2, |
|
134
|
|
|
padding="same", |
|
135
|
|
|
) |
|
136
|
|
|
upsample_conv = tf.keras.Sequential( |
|
137
|
|
|
[ |
|
138
|
|
|
layer.Conv3dBlock( |
|
139
|
|
|
filters=num_channels[level], kernel_size=3, padding="same" |
|
140
|
|
|
), |
|
141
|
|
|
layer.ResidualConv3dBlock( |
|
142
|
|
|
filters=num_channels[level], kernel_size=3, padding="same" |
|
143
|
|
|
), |
|
144
|
|
|
] |
|
145
|
|
|
) |
|
146
|
|
|
self._upsample_deconvs.append(upsample_deconv) |
|
147
|
|
|
self._upsample_convs.append(upsample_conv) |
|
148
|
|
|
if self._use_additive_upsampling: |
|
149
|
|
|
resize = layer.Resize3d(shape=self._tensor_shapes[level]) |
|
150
|
|
|
self._resizes.append(resize) |
|
151
|
|
|
self._extract_layers = [ |
|
152
|
|
|
tf.keras.Sequential( |
|
153
|
|
|
[ |
|
154
|
|
|
tfkl.Conv3D( |
|
155
|
|
|
filters=out_channels, |
|
156
|
|
|
kernel_size=3, |
|
157
|
|
|
strides=1, |
|
158
|
|
|
padding="same", |
|
159
|
|
|
kernel_initializer=out_kernel_initializer, |
|
160
|
|
|
activation=out_activation, |
|
161
|
|
|
), |
|
162
|
|
|
layer.Resize3d(shape=image_size), |
|
163
|
|
|
] |
|
164
|
|
|
) |
|
165
|
|
|
for _ in self._extract_levels |
|
166
|
|
|
] |
|
167
|
|
|
|
|
168
|
|
|
def call(self, inputs: tf.Tensor, training=None, mask=None) -> tf.Tensor: |
|
|
|
|
|
|
169
|
|
|
""" |
|
170
|
|
|
Build LocalNet graph based on built layers. |
|
171
|
|
|
|
|
172
|
|
|
:param inputs: image batch, shape = (batch, f_dim1, f_dim2, f_dim3, ch) |
|
173
|
|
|
:param training: None or bool. |
|
174
|
|
|
:param mask: None or tf.Tensor. |
|
175
|
|
|
:return: shape = (batch, f_dim1, f_dim2, f_dim3, out_channels) |
|
176
|
|
|
""" |
|
177
|
|
|
|
|
178
|
|
|
# down sample from level 0 to E |
|
179
|
|
|
# outputs used for decoding, encoded[i] corresponds -> level i |
|
180
|
|
|
# stored only 0 to E-1 |
|
181
|
|
|
encoded = [] |
|
182
|
|
|
h_in = inputs |
|
183
|
|
|
for level in range(self._extract_max_level): # level 0 to E - 1 |
|
184
|
|
|
skip = self._downsample_convs[level](inputs=h_in, training=training) |
|
185
|
|
|
h_in = self._downsample_pools[level](inputs=skip, training=training) |
|
186
|
|
|
encoded.append(skip) |
|
187
|
|
|
h_bottom = self._conv3d_block( |
|
188
|
|
|
inputs=h_in, training=training |
|
189
|
|
|
) # level E of encoding/decoding |
|
190
|
|
|
|
|
191
|
|
|
# up sample from level E to D |
|
192
|
|
|
decoded = [h_bottom] # level E |
|
193
|
|
|
for idx, level in enumerate( |
|
194
|
|
|
range(self._extract_max_level - 1, self._extract_min_level - 1, -1) |
|
195
|
|
|
): # level E-1 to D |
|
196
|
|
|
h = self._upsample_deconvs[idx](inputs=h_bottom, training=training) |
|
197
|
|
|
if self._use_additive_upsampling: |
|
198
|
|
|
up_sampled = self._resizes[idx](inputs=h_bottom) |
|
199
|
|
|
up_sampled = tf.split(up_sampled, num_or_size_splits=2, axis=4) |
|
|
|
|
|
|
200
|
|
|
up_sampled = tf.add_n(up_sampled) |
|
201
|
|
|
h = h + up_sampled |
|
202
|
|
|
h = h + encoded[level] |
|
203
|
|
|
h_bottom = self._upsample_convs[idx](inputs=h, training=training) |
|
204
|
|
|
decoded.append(h_bottom) |
|
205
|
|
|
|
|
206
|
|
|
# output |
|
207
|
|
|
output = tf.add_n( |
|
208
|
|
|
[ |
|
209
|
|
|
self._extract_layers[idx]( |
|
210
|
|
|
inputs=decoded[self._extract_max_level - level] |
|
211
|
|
|
) |
|
212
|
|
|
for idx, level in enumerate(self._extract_levels) |
|
213
|
|
|
] |
|
214
|
|
|
) / len(self._extract_levels) |
|
215
|
|
|
|
|
216
|
|
|
return output |
|
217
|
|
|
|