Code Duplication    Length = 13-15 lines in 2 locations

examples/efficient_net.py 1 location

@@ 321-335 (lines=15) @@
318
        x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x)
319
        x = layers.Activation(activation_fn, name=name + 'activation')(x)
320
321
        if 0 < se_ratio <= 1:
322
            filters_se = max(1, int(filters_in * se_ratio))
323
            se = layers.GlobalAveragePooling3D(name=name + 'se_squeeze')(x)
324
            se = layers.Reshape((1, 1, 1, filters), name=name + 'se_reshape')(se)
325
            se = layers.Conv3D(filters_se, 1,
326
                            padding='same',
327
                            activation=activation_fn,
328
                            # kernel_initializer=CONV_KERNEL_INITIALIZER,
329
                            name=name + 'se_reduce')(se)
330
            se = layers.Conv3D(filters, 1,
331
                            padding='same',
332
                            activation='sigmoid',
333
                            # kernel_initializer=CONV_KERNEL_INITIALIZER,
334
                            name=name + 'se_expand')(se)
335
            x = layers.multiply([x, se], name=name + 'se_excite')
336
337
        x = layers.Conv3D(filters_out, 1,
338
                        padding='same',

deepreg/model/backbone/efficient_net.py 1 location

@@ 552-564 (lines=13) @@
549
        else:
550
            x = inputs
551
552
        if 0 < se_ratio <= 1:
553
            filters_se = max(1, int(filters_in * se_ratio))
554
            se = layers.GlobalAveragePooling3D(name=name + 'se_squeeze')(x)
555
            se = layers.Reshape((1, 1, 1, filters), name=name + 'se_reshape')(se)
556
            se = layers.Conv3D(filters_se, 1,
557
                            padding='same',
558
                            activation=activation_fn,
559
                            name=name + 'se_reduce')(se)
560
            se = layers.Conv3D(filters, 1,
561
                            padding='same',
562
                            activation='sigmoid',
563
                            name=name + 'se_expand')(se)
564
            x = layers.multiply([x, se], name=name + 'se_excite')
565
566
        x = layers.Conv3D(filters_out, 1,
567
                        padding='same',